

ASX Announcement

Infill Drilling Confirms Continuity of High Grade Tungsten Mineralisation at Kilba Project

Highlights

- Infill drilling confirms continuity of tungsten mineralisation at the "Flagship" Kilba Project.
- Better intersections include:
 - \circ 14 metres at 0.82% WO₃ from 53 metres (Zone 11),
 - \circ 15 metres at 0.76% WO₃ from 78 metres including 6 metres at 1.45 WO₃ (Zone 11),
 - $\circ~$ 15 metres at 0.24% WO_3 from 27 metres (Zone 8) and
 - \circ 9 metres at 0.47% WO₃ from 51 metres (Zone 8).
- New drilling at Zone 12 intersected multiple low to medium grade zones of tungsten mineralisation over 260 metres of strike. Better intersections include:
 - \circ 6 metres at 0.15% WO₃ from 53 metres,
 - \circ 2 metres at 0.69% WO₃ from 83 metres including 1 metres at 1.03 WO_{3.}
- Completion of infill drilling to a 40 metre spacing is planned at Zones 8 and 11 in the December quarter.

Tungsten Mining NL (ASX:TGN) ("the Company") is pleased to report that drilling continues to intersect significant high-grade tungsten mineralisation at the Kilba Project in the Gascoyne Region of Western Australia. During August and September 2014, the Company drilled 53 reverse circulation (RC) holes for 4,304 metres on the 100% owned and granted Mining Lease 08/314. To date TGN has drilled a total of 24 diamond holes and 95 RC holes for 11,190 metres at the Kilba Project (Figure 1).

In May 2013, the Company defined an Indicated and Inferred Mineral Resource at Zone 8 and Zone 11 of the Kilba project (ASX announcement; 31 May 2013). The infill drilling program is being undertaken to increase the confidence level of the Kilba Mineral Resource at Zones 8 and 11 to an Indicated status in support of formal feasibility studies commencing in the December quarter.

Drilling completed in August/September consisted of infilling sections to a 40 metre spacing for high-grade zones of the Zone 11 Mineral Resource and the drilling of 80 metre space sections at Zone 8 and 12.

Figure 1 – plan displaying location of recent drilling (blue stars) at the Kilba Project

Results from all drilling have been received and are discussed in sections below for individual prospects.

Zone 11

A total of 37 RC holes for 2,737 metres were drilled at Zone 11 to complete 40 metre hole spacing for high-grade zones of the Mineral Resource (Figure 2). This drilling confirmed continuity of tungsten mineralisation and west plunging high-grade shoots. Better drill intersections are presented in Table 1 and a complete list of intersections greater than 2 metres at 0.10% WO3 are presented in Appendix 1. Collar locations are plotted on Figure 2.

		Kilb	a Project, R	C Drilling (>0).10 % WO3)			
		MGA Coord	inates			Inters	ections	
Hole No	Easting (m)	Northing (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ %
KRC0043	350,408	7,479,906	65	-60/020	23	36	13	0.33
KRC0046	350,355	7,479,881	90	-60/020	53	67	14	0.82
				Incl.	55	57	2	1.36
				Incl.	64	67	3	2.00
KRC0048	350,457	7,479,928	44	-60/020	1	6	5	0.51
				Incl.	3	4	1	1.90
KRC0050	350,430	7,479,853	102	-60/020	69	72	3	0.96
					78	93	15	0.76
				Incl.	85	91	6	1.45
KRC0053	350,461	7,479,820	138	-50/020	111	114	3	0.59
KRC0057	350,333	7,479,930	66	-60/020	22	27	5	0.39
				Incl.	25	26	1	1.05
KRC0060	350,267	7,479,871	115	-60/020	83	91	8	0.35
				Incl.	87	88	1	1.23
KRC0067	350,035	7,480,074	66	-60/035	44	54	10	0.30
				Incl.	48	49	1	1.24
KRC0095	349,951	7,480,096	96	-60/035	68	76	8	0.20
1m riffle S		es. Analysis is XF top cut grade, up						ade 0.10%

Table 1 – Better intersection from Zone 11 RC drilling

Figure 2 – plan displaying collar location of recent drilling at Zone 11 (labels refer to drill holes prefixed KRC0...) and locations of Sections A–B and C–D shown below

Infill drilling has increased the level of confidence in the geological interpretation with scheelite skarns traceable over numerous drill holes and drill sections. At Zone 11 these mineralised skarns are gently folded around the Kilba Granite for approximately 1.4 kilometres.

Tungsten mineralisation is associated with a 30 - 80 metre thick mineralised horizon consisting of psammitic and pelitic schists, carbonate units, calc-silicates and skarns. Tungsten mineralisation is associated with multiple narrow prograde and retrograde oxidised skarns typically 0.3 to 3 metres thick that form intersections up to 15 metre greater that $0.10\% WO_3$. At the eastern end of Zone 11 mineralisation is associated with typically high-grade zones that dip steeply towards the south (Figure 3). In the Central and Western domains mineralisation is associated with multiple low – medium grade zones dipping moderate to shallowly towards the southwest (Figure 4).

The mineralogy of the Kilba skarns consists dominantly of grossularite garnet and pyroxene within prograde assemblages, altered to amphiboles, vesuvianite, epidote and clinozoisite within retrograde assemblages. Most high-grade scheelite is associated with the retrograde assemblages.

Figure 3 – Typical cross section from Eastern domain showing moderately steep dipping scheelite mineralisation

TGN plan to complete infill drilling of sections to a 40 metre spacing over a 1.2 kilometre strike length of Zone 11 in the December Quarter. This will involve the drilling of 40 RC holes for approximately 3500 metres.

Figure 4 – Typical cross section from Central domain at Zone 11 showing multiple zones of shallow dipping scheelite mineralisation in an 80 metre wide mineralised horizon

Zone 8

A total of 7 RC holes for 726 metres were drilled at Zone 8 to complete 80 metre spaced sections over 240 metres (Figure 5). Drilling tested where Union Carbide holes intersected high-grade tungsten mineralisation in the 1980s and TGN drilling intersected significant widths of tungsten mineralisation (Figure 6). Better drill intersections are presented in Table 2 and a complete list of intersections greater than 2 metres at 0.10% WO3 are presented in Appendix 1.

		Kilba	Project, RC	Drilling– (>(0).10 % WO₃)			
		MGA Coordi	nates			Inters	ections	
Hole No	Easting (m)	Northing (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ %
KRC0070	351,631	7,480,282	100	-50/140	27	42	15	0.24
				Incl.	39	40	1	1.33
KRC0071	351,614	7,480,300	95	-55/140	51	60	9	0.47
				Incl.	51	52	1	1.08
KRC0072	351,703	7,480,320	100	-50/140	28	44	16	0.27
				Incl.	33	34	1	1.01
KRC0074	351,679	7,480,350	110	-60/140	73	75	2	0.38
		Analysis is XRF de of internal waste.				Perth. Lower	cut-off grade	0.10% WO ₃ ,

Table 2 – Better results from Zone 8 RC drilling

Figure 6 – Cross section at Zone 8 showing thick high-grade scheelite mineralisation. Note stratigraphy has been overturned at Zone 8

Results from drilling at Zone 8 were extremely encouraging with three holes intersecting substantial thicknesses of shallow moderate to strong tungsten mineralisation. Deeper holes did however intersect progressively more granite stoping out the target zones at depth.

Geological mapping and UV lamping has identified strike extensions to Zone 8 and indicates excellent potential to increase the Zone 8 Mineral Resource. Drilling of strike extensions and infilling of existing holes is planned in the December Quarter.

Zone 12

A total of 9 RC holes for 841 metres were drilled at Zone 12 to complete 80 metre spaced sections over 240 metres of strike (Figure 7). The drilling tested where Union Carbide holes intersected significant tungsten mineralisation in the 1980s and intersected multiple zones of weak to moderate scheelite mineralisation (Figure 8). Better drill intersections are presented in Table 3 and a complete list of intersections greater than 2 metres at 0.10% WO3 are presented in Appendix 1.

		Kilba	Project, RC	Drilling- (>(0).10 % WO₃)				
		MGA Coordinates				Intersections			
Hole No	Easting (m)	Northing (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃%	
KRC0077	350,835	7,481,239	80	-60/155	47	51	4	0.12	
KRC0082	350,702	7,481,221	96	-60/155	28	30	2	0.18	
					53	59	6	0.15	
					83	85	2	0.69	
				Incl.	83	84	1	1.03	
KRC0083	350,642	7,481,161	76	-60/155	50	53	3	0.17	
KRC0084	350,625	7,481,198	119	-60/155	45	47	2	0.12	
					64	68	4	0.16	
					87	89	2	0.40	
		Analysis is XRF de of internal waste.				Perth. Lower	cut-off grade	0.10% WO ₃ ,	

Geological mapping and UV lamping has identified extensions to Zone 12 and it is considered encouraging that drilling intersected multiple zones of tungsten mineralisation. The strongest mineralisation was intersected in the western-most sections and mineralisation is open to the west (Figure 8). Plotting of mapping completed in September is still proceeding and will assist target generation.

Figure 7 – Plan showing collar location of recent drilling at Zone 12 and locations of Section G–H shown below

Figure 8 – Cross section at Zone 12 showing multiple zones of low-grade scheelite mineralisation

Tungsten Mining's CEO, Mr Craig Ferrier said "this program was designed to give further confidence in the Kilba resource in support of detailed feasibility studies and project development. We are very pleased that the drilling has indicated continuity of the mineralisation at Zone 11, and broader mineralisation at Zone 8. We are also encouraged by the geological mapping and UV lamping program that has identified strike extensions to Zone 8 and the prospect of further targets within the broader Kilba prospect area. The next stage of drilling, in progress now, will complete the infill program and will allow an update of the JORC Mineral Resource to be completed late 2014".

ENDS

Craig Ferrier Chief Executive Officer 7 October 2014

Competent Person's Statement

The information in this report that relates to Exploration Targets and Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Peter Bleakley, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Bleakley is not a full-time employee of the company. Mr Bleakley is a consultant to the mining industry. Mr Bleakley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bleakley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

For further information contact:

Craig Ferrier	Chief Executive Officer	Tel: +61 9486 8492
Colin Hay	PPR Public Relations	Tel: + 61 8 9388 0944

Appendix 1 - JORC Code Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC-Code Explanation	Commentary
	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The deposit is sampled using Reverse Circulation (RC), Diamond Drilling (DD) and trenches over several drilling campaigns. The latest drilling campaign was completed by Tungsten Mining utilising RC drilling. A total of 53 Tungsten Mining RC drillholes (4,304m) were drilled and the majority of the holes were drilled at approximately 60 [°] .
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Tungsten Mining drillhole collar locations were picked-up by a licensed surveyor using a Carlson Surveyor+ DGPS. Downhole surveying was measured by the drill contractors using either a Pathfinder survey instrument inside the drill string for RC drilling. Certified standard and blanks samples were inserted into the sample sequences in according to Tungsten Mining QAQC procedures. Duplicate samples were collected to check repeatability of sampling and variability or nugget effect for tungsten mineralisation. Results from this QAQC sampling were considered excellent.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The RC drilling crew collected 1 metre intervals from the cyclone and then riffle split the bulk sample to produce two representative 2 – 4 kilogram samples in calico bags. The riffle splitter was cleaned by mechanical vibration and hosing with pressurised air to eliminate sample contamination. One of the calico samples is for analysis and the second duplicate sample is retained as a reference sample for possible reanalysing / QAQC activities. Tungsten Mining samples were submitted to Ultra Trace Laboratories of Perth for analysis by XRF Tungsten and Molybdenum Ore -Extended Suite.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Tungsten Mining completed 24 diamond drillholes and 43 RC drillholes. RC holes depths ranged from 52 to 174 m, averaging 115 m. RC drilling used a face-sampling hammer that produced a nominal 140m diameter hole.
	Method of recording and assessing core and chip sample recoveries and results assessed.	RC recovery was visually assessed, recorded on drill logs and considered to be acceptable within the mineralized zones.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples were visually checked for recovery, moisture and contamination. A cyclone and splitter were used to provide a uniform sample and these were routinely cleaned. The drill contractor blew out the hole at the beginning of each drill rod to remove excess water and maintain dry samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Ground conditions for RC drilling were good and drilling returned consistent size samples. No significant bias is expected, and any potential bias is not considered material at this stage.

Criteria	JORC-Code Explanation	Commentary
	Whether core and chip samples have been geologically and geotechnically logged to a	Tungsten Mining uses specially designed drill logs for skarn type deposits to capture the geological data. The modified log sheet lists percentages of various important skarn minerals.
	level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	During logging part of the RC sample is washed, logged and placed into chip trays. The chip trays are stored in a designated building at site.
Logging	, , , , , , , , , , , , , , , , , , ,	All drill data is digitally captured and stored in a central database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC chips logging included records of lithology, mineralogy, textures, oxidation state and colour. Visual estimates of percentages of key minerals associated with tungsten mineralization and veining are made.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full
	If core, whether cut or sawn and whether quarter, half or all core taken.	Not Applicable.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the rig using a cyclone and put through a riffle splitter to produce two 2 – 4 kg samples.
	For all sample types, the nature, quality and appropriateness of the sample	Samples were dried, crushed to 3mm using Boyd jaw crushers to achieve a nominal 90% passing – 3mm. Sieve check on 1 in 50 samples.
	preparation technique.	After crushing and splitting the samples are sent for pulverisers to be ground to 75 microns. Grind check on 1 in 50 samples.
		Field QAQC procedures included the insertion of field duplicates, blanks and commercial standards. Standards were inserted at intervals of 30.
Sub-sampling techniques	Quality control procedures adopted for all sub-sampling stages to maximise	If a duplicate and blank were inserted behind mineralised samples on a one in 30 sample basis.
and sample preparation	representivity of samples.	All laboratory QC data is reported within the structure of the final reports. A blank is included at the start of every job and then after every 90 samples. One duplicate and one CRM are included at random within each set of 24 analysed. One sample preparation split is performed in 25 samples. Wet sieving of at least one sample in every batch to confirm % -75um.
	sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Approximately 1 in 30 RC field duplicates were taken from 1m riffle split samples at the rig. Repeatability in RC duplicate samples was found to be excellent.
	results for field duplicate/second-half	Three diamond holes were drilled to twin RC drilling. These holes intersected similar zones of mineralization at target depths and again showed the particulate or nuggety nature of tungsten mineralization. Contained metal was similar.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered to be appropriate to accurately represent the tungsten mineralisation at Kilba based on the thickness and consistency of the intersections, the sampling methodology and the percent value assay ranges for the primary elements.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	XRF has proven to be a very accurate analytical technique for a wide range of base metals, trace elements and major constituents found in rocks and mineral materials. Glass fusion XRF is utilised for assaying, since it provides good accuracy and precision; it is suitable for analysis from very low levels up to very high levels
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld magnetic susceptibility meter (KT-10) was used to measure magnetic susceptibility for every sample. Data is stored in the database.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Field QAQC procedures included the insertion of field duplicates, blanks and commercial standards. Assay results have been generally satisfactory demonstrating acceptable levels of accuracy and precision.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have verified intersections in RC drilling. TGN personnel conducted UV lamping to visually estimate scheelite content and confirm drill intersections
assaying	The use of twinned holes.	RC holes that intercepted high grades zones were verified by closely drilled diamond holes in 2013.

Criteria	JORC-Code Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Logging takes place at the drilling site. Panasonic Toughbook computers are used to record the logging. A set of standard Excel templates are used to capture the data. Data were then sent to resource consultancy, CSA Global for validation and storage into a relational database.
	Discuss any adjustment to assay data.	No adjustments were made, other than for values below the assay detection limit which have been entered as the negative of the detection limit
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Once each drillhole is drilled to the targeted depth, it is routinely downhole surveyed. Downhole surveying was measured by the drill contractors using a Pathfinder survey instrument for RC drilling. All drillholes had measurements covering the length of the hole with the reported accuracy of ±2 degrees. The instrument measures magnetic azimuth and dip. The correction for magnetic azimuth (0.8 degrees) is applied when the drillhole database is processed. Holes have been picked up using a Carlson Surveyor + DGPG unit to sub- metre accuracy. Periodically drillhole collar locations are picked-up by a licensed surveyor using a Topcon HiPer II RTK GPS with an accuracy of +/- 10mm Horizontally and +/-15mm Vertically.
	Specification of the grid system used.	The grid system is MGA_GDA94 Zone 50.
	Quality and adequacy of topographic control.	AAM Pty Limited (AAM) was commissioned to fly aerial photography of the area in November of 2012 to obtain detailed topographic surface. AAM provided Tungsten Mining with a surface Digital Terrain Model (DTM) with 0.15 m vertical accuracy, 0.5 m contours and a 15 centimetre (cm) resolution digital orthophoto.
	Data spacing for reporting of Exploration Results.	Drill holes were generally drilled using 40 x 40 m grid for Zone 11 and 80 x 40 m grid for Zones 8 and 12.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not Applicable.
	Whether sample compositing has been applied.	Not Applicable.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill sections have been orientated approximately perpendicular to the strike of the mineralised skarn units observed at Kilba. Holes are dominantly drilled at -60° towards skarn units to return intervals with thickness as true as possible.
relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Diamond drilling has confirmed that drilling orientation did not introduce any bias regarding the orientation of the skarn units.
Sample security	The measures taken to ensure sample security.	All sample numbers are generated in the site office. Once samples intervals are selected, the numbers are assigned to each sample. The sample number, drillhole name and sampled interval are recorded in the sampling sheets. All sample bags are properly sealed and transported to Nanutarra roadhouse where they are couriered by Star Freightlines to the Ultra Trace laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques are consistent with industry standards. Consistency of data was validated by CSA Global while loading into the database (Depth from < Depth to; interval is within hole depth, check for overlapping samples or intervals, etc.). Any data which fails the database constraints and cannot be loaded is returned to Tungsten Mining for validation, etc.). Global consistency was also checked later on by plotting sections using the database and reconciling assays.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC-Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Kilba prospect comprises one Mining Lease and one Exploration License covering an area of approximately 35 km² (3,548 hectares). Current registered holders of the tenements are SM3-W Pty Ltd and BRL Exploration Pty Ltd. The Buurabalayji Thalanyji Aboriginal Corporation is entitled to a production fee of 0.75% plus GST of the sale price realised by the tenement holder for all minerals or commodities recovered and sold. The normal Western Australian state royalties apply. Tungsten Mining has 100% interest in all tenements. The prospect has a current expenditure commitment of \$90,500 per reporting year.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There are 32 historic drillholes and 5 trenches in the area that were drilled in 3 campaigns from 1975 till 1981 by the previous operator (ANZECO / Union Carbide).
		Mineralization is associated with scheelite tungsten skarns The mineralogy of the Kilba skarns consist dominantly of grossularite garnet and pyroxene intermediate in composition between diopside and hedenbergite (salite) for prograde skarns.
Geology	Deposit type, geological setting and style of mineralisation.	This assemblage is altered to dark green to black amphiboles (dominantly actinolite to ferroactinolite), vesuvianite, epidote and clinozoisite in retrograde skarns. This garnet mineralogy is most typical of oxidised rather than reduced skarns (i.e. oxidised ore fluids). Higher temperature prograde and lower-temperature retrograde assemblages can be recognized. Most scheelite is reportedly associated with the retrograde assemblage
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	In the company's opinion this material has been adequately reported in previous announcements for drilling in 2012/2013 and collar data for recent drilling is tabulated in Appendix 1.
	easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
Drill hole Information	• dip and azimuth of the hole	In the company's opinion this material has been adequately reported in previous announcements for drilling in 2012/2013 and collar data for recent drilling is tabulated in Appendix 1.
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Intersections are reported for all intervals greater than $2m$ at 0.10% WO ₃ using a lower cut-off grade 0.10% WO ₃ , no top cut grade and up to 3.0m of internal waste. All high-grade assays >1.0% WO ₃ are report beneath the relevant intersection.
methods	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All high-grade assays >1.0% WO ₃ are reported beneath the relevant intersection. Interval waste up to 3m is included in intersections provided the adjacent zone and waste are >0.1% WO ₃ .

Criteria	JORC-Code Explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable.
Relationship	These relationships are particularly important in the reporting of Exploration Results.	Drill hole angles of generally -60° toward the Northeast are adequate to drill mineralised skarn units
between ' mineralisation widths and	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Drilling is generally perpendicular to strike of mineralisation. Holes intersection mineralisation at between 60 - 90° and true thickness will be between 70 – 100% of the intersection thickness.
intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Geometry of the mineralisation with respect to the drill hole angle is known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in body of text
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Intersections greater than 2m at 0.10% WO₃ are reported and hole with no significant mineralisation documented in Appendix 1.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	In the company's opinion this material has been adequately reported in previous announcements.
	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Drilling is planned to upgrade the resources and check the extent of the mineralised zones. This is discussed in the text of this document.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	All relevant diagrams are included in this document.

Appendix 2 – RC Drill Collar Data and Intersections > 2m at 0.10% WO_3

Kilba Project, RC Drilling– (>(0.10 % WO₃) MGA Coordinates Intersections								
Hole No	Easting (m)	Northing (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ %
			Zone	11 Prospect			1	1
KRC0043	350,408	7,479,906	65	-60/020	23	36	13	0.33
					46	48	2	0.23
KRC0044	350,394	7,479,871	84	-60/020	64	67	3	0.32
					72	78	6	0.24
KRC0045	350,369	7,479,919	60	-60/020	19	21	2	0.37
KRC0046	350,355	7,479,881	90	-60/020	53	67	14	0.82
				Incl.	55	57	2	1.36
				Incl.	64	67	3	2.00
KRC0047	350,342	7,479,843	120	-60/020	88	93	5	0.47
					102	104	2	0.43
KRC0048	350,457	7,479,928	44	-60/020	1	6	5	0.51
				Incl.	3	4	1	1.90
					25	27	2	0.20
KRC0049	350,444	7,479,890	70	-60/020		No Significa	int Intersection	1
KRC0050	350,430	7,479,853	102	-60/020	69	72	3	0.96
					78	93	15	0.76
				Incl.	85	91	6	1.45
KRC0051	350,499	7,479,913	48	-60/020		No Significa	Int Intersection	I
KRC0052	350,481	7,479,877	72	-60/020	45	47	2	0.49
					52	55	3	0.16
KRC0053	350,461	7,479,820	138	-50/020	111	114	3	0.59
KRC0054	350,520	7,479,900	54	-60/000		No Significa	int Intersection	1
KRC0055	350,520	7,479,860	95	-60/000		No Significa	Int Intersection	ı
KRC0056	350,560	7,479,864	100	-60/000		No Significa	Int Intersection	1
KRC0057	350,333	7,479,930	66	-60/020	22	27	5	0.39
				Incl.	25	26	1	1.05
KRC0058	350,294	7,479,946	54	-60/020	13	17	4	0.21
KRC0059	350,280	7,479,908	84	-60/020		No Significa	Int Intersection	ı
KRC0060	350,267	7,479,871	115	-60/020	83	91	8	0.35
				Incl.	87	88	1	1.23
					95	98	3	0.25
KRC0061	350,157	7,480,038	36	-60/020		No Significa	Int Intersection)
KRC0062	350,144	7,480,001	54	-60/020	5	11	6	0.18
					30	34	4	0.11
KRC0063	350,130	7,479,963	75	-60/020	56	58	2	0.17
KRC0064	350,116	7,479,925	104	-60/020		No Significa	int Intersection	1
KRC0065	350,086	7,480,078	44	-60/035	19	21	2	0.23

		Kilba MGA Coord		CDrilling– (>(0).10 % WO₃)	Inters	sections	
Hole No	Easting (m)	Northing (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ %
KRC0066	350,058	7,480,107	30	-60/035	16	21	5	0.26
KRC0067	350,035	7,480,074	66	-60/035	17	19	2	0.14
					32	36	4	0.21
					44	54	10	0.30
				Incl.	48	49	1	1.24
KRC0068	350,017	7,480,050	84	-60/035		No Significa	ant Intersection	
KRC0069	349,994	7,480,018	104	-60/035	51	54	3	0.17
					87	91	4	0.15
KRC0085	349,998	7,480,160	36	-60/035		No Significa	ant Intersection	
KRC0086	349,975	7,480,128	54	-60/035	35	37	2	0.18
KRC0087	349,951	7,480,096	66	-60/035		No Significa	ant Intersection	
KRC0088	349,928	7,480,063	120	-60/035	43	48	5	0.45
					92	97	5	0.33
KRC0089	350,219	7,479,973	45	-60/020	5	7	2	0.42
					22	24	2	0.19
					31	33	2	0.46
KRC0090	350,205	7,479,936	75	-60/020	42	45	3	0.14
					50	54	4	0.26
KRC0091	350,191	7,479,898	105	-60/020	81	83	2	0.34
KRC0092	350,124	7,480,066	30	-60/020	6	8	2	0.52
KRC0093	350,110	7,480,028	52	-60/020	5	8	3	0.20
					35	38	3	0.20
KRC0095	349,951	7,480,096	96	-60/035	20	22	2	0.22
		,,			68	76	8	0.20
			Zon	e 8 Prospect				
KRC0070	351,631	7,480,282	100	-50/140	27	42	15	0.24
				Incl.	39	40	1	1.33
					47	49	2	0.16
KRC0071	351,614	7,480,300	95	-55/140	51	60	9	0.47
				Incl.	51	52	1	1.08
					73	75	2	0.24
KRC0072	351,703	7,480,320	100	-50/140	28	44	16	0.27
			-	Incl.	33	34	1	1.01
KRC0073	351,625	7,480,289	126	-90/000			ant Intersection	
KRC0074	351,679	7,480,350	110	-60/140	73	75	2	0.38
KRC0075	351,558	7,480,223	100	-60/140	44	49	5	0.10
KRC0076	351,548	7,480,244	95					
				e 12 Prospect				
KRC0077	350,835	7,481,239	80	-60/155	47	51	4	0.12
KRC0078	350,818	7,481,275	126		T		nt Intersection	

MGA Coordinates					Intersections			
Hole No	Easting (m)	Northing (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃%
KRC0079	350,797	7,481,207	80			No Significa	nt Intersection	
KRC0080	350,780	7,481,244	90			No Significa	nt Intersection	
KRC0081	350,719	7,481,185	66			No Significa	nt Intersection	
KRC0082	350,702	7,481,221	96	-60/155	28	0.18		
					53	59	6	0.15
					83	85	2	0.69
				Incl.	83	84	1	1.03
KRC0083	350,642	7,481,161	76	-60/155	50	53	3	0.17
KRC0084	350,625	7,481,198	119	-60/155	45	47	2	0.12
					64	68	4	0.16
					87	89	2	0.40
KRC0094	350,625	7,481,198	108	-80/155		No Significa	nt Intersection	

1m riffle Split RC samples. Analysis is XRF determination by Ultra Trace Laboratory, Perth. Lower cut-off grade 0.10% WO₃, no top cut grade, up to 3.0m of internal waste. Grid coordinates are MGA Zone 50.