

3 April 2020

ASX ANNOUNCEMENT

Final assay results received for Mulgine Trench PFS drill program, continuing to show substantial thicknesses of tungsten mineralisation. Updated Mineral Resource estimate scheduled for April 2020.

Highlights

- Resource development drilling program successfully completed with a total of **280 holes for 47,983 metres** drilled* and all assays received.
- The latest assay results continue to illustrate substantial thicknesses of tungsten mineralisation within a 160 to 260 metre wide zone at Mulgine Trench. Drilling has defined mineralised envelopes of:
 - 206 metres at 0.13% WO₃ and 270 ppm Mo from surface (0 metres) in MMC522
 - 227 metres at 0.10% WO₃ and 240 ppm Mo from 45 metres in MMCD301
 - o 229 metres at 0.10% WO₃ and 280 ppm Mo from 1 metres in MMCD309
- Drilling continued to intersect stronger molybdenum mineralisation associated within the 50m to 120m wide Lower Tungsten-Molybdenum Domain within the larger tungsten envelope. Significant intersections include:
 - o 34 metres at 0.12% WO₃ and 800 ppm Mo from 6 metres in MMC540
 - o 62 metres at 0.08% WO₃ and 780 ppm Mo from 12 metres in MMC520
- Gold and silver (accessory minerals) grades defined 850,000 ounces of gold and 35 million ounces of silver.
- Work on an updated Mineral Resource estimate has commenced and scheduled for completion in April 2020.

Australian tungsten developer, Tungsten Mining NL (ASX: TGN) ("TGN" or "the Company") is pleased to report on the latest results from drilling at the Mt Mulgine Project.

On 19 December 2019, the Company announced the updated Mulgine Trench Mineral Resource estimate which **resulted in a major increase in contained tungsten and molybdenum and highlighting the significance of accessory minerals gold (850,000 ounces) and silver (35 million ounces)** (refer ASX announcement 19 December 2019, "Major Mineral Resource Estimate Upgrade for Mulgine Trench Deposit").

This announcement reports the last of the assay results for the Mt Mulgine PFS drill program, representing **19 RC holes and seven diamond tails for 3,332 metres** (2,737m RC, 595 metres HQ diamond tails). The Company is pleased to report that the latest assay results, which follow the Mineral Resource estimate released in December 2019, continue to be outstanding and demonstrate intersections greater than 200 metres in true width (refer Figures 1 & 2).

Tungsten Mining's CEO Craig Ferrier commented, "the Mineral Resource estimate released in December 2019 has already delivered a substantial increase in contained tungsten and molybdenum and a maiden resource for accessory minerals of gold and silver.

We have now received the last of the assay results for the recent drilling at the Mulgine Trench deposit and the results continue to provide increasing confidence in the deposit. The principle objective of the most recent infill drilling program was to upgrade the dominantly inferred Mulgine Trench Mineral Resource estimate to a more Indicated status. With drilling completed and all assays to hand we look forward to reporting an updated Mineral Resource estimate later this month."

*Following completion of a reconciliation of the metres drilled it was noted that the ASX announcement of 12 March 2020 incorrectly referred to 280 holes for 48,654 metres drilled; this should have read 280 holes for 47,983 metres drilled.

T+61 8 9486 8492F+61 8 6117 4039

info@tungstenmining.com RESOURCES COMPANY tungstenmining.com

Level 4, 46 Colin Street, West Perth WA 6005 Australia PO Box 452, West Perth WA 6872 Australia

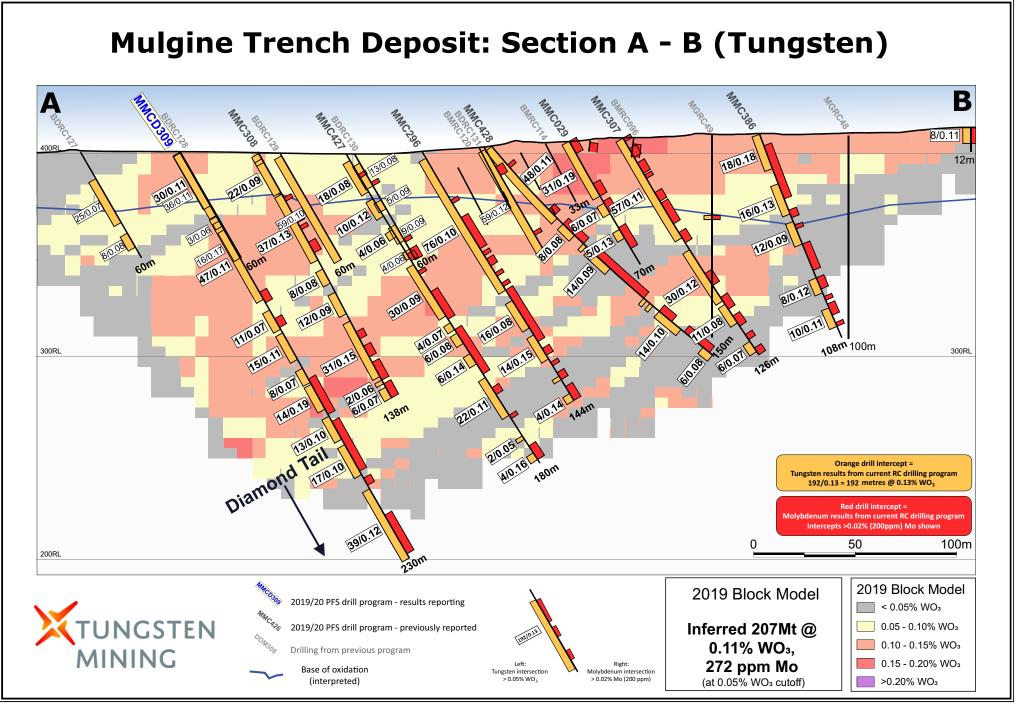


Figure 1. Cross section showing diamond tail on MMCD309 that has intersected significant mineralisation beneath the 2019 Mulgine Trench Mineral Resource. Location of section is displayed on Figure 4.

Mulgine Trench Deposit: Section C - D (Tungsten)

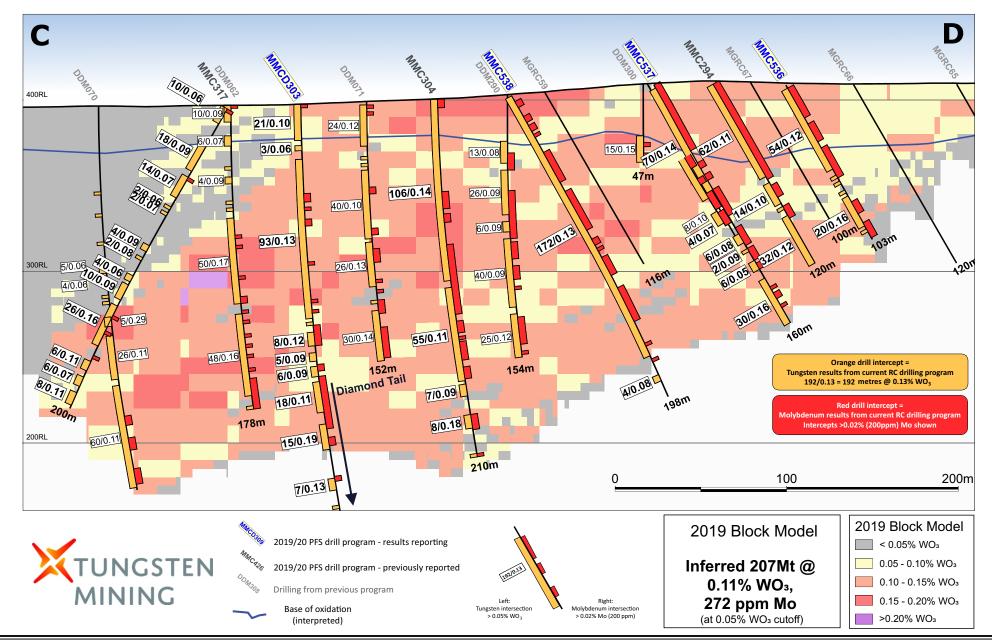


Figure 2. Cross section showing intersections >0.05% WO₃ defined by Tungsten Mining drilling against the 2019 Mulgine Trench Mineral Resource. Location of section is displayed on Figure 4.

Discussion of latest assay results

In July 2019, the Company commenced a phased drilling program as part of the Mt Mulgine Project PFS with the objective of upgrading the dominantly Inferred Mulgine Trench Mineral Resource estimate to a dominantly Indicated status. The reverse circulation (RC) component of the drilling program infilling sections to a 40 metre spacing was completed on 21 February 2020. Six of these RC holes and one diamond hole from an earlier program were deepened by diamond tails to reach target depths. This was completed by 27 February 2020. A total of 280 holes for 47,983 metres (47,388 metre of RC drilling, 595 metres HQ diamond tails) has been drilled.

The latest assay results from 19 RC holes and 7 diamond tails are being reported from the main part of the deposit (11 holes) and the edge of the deposit (15 holes). Holes drilled in the main part of the deposit continued to intersect up to a 230 metre thick mineralised envelope. Holes that demonstrate the significance of mineralisation include MMC522, MMCD301 and MMCD309. These holes intersected multiple zones with minor internal waste forming overall mineralised envelopes of **206** metres at 0.13% WO₃ and 270 ppm Mo from surface (0 metres), **227 metres at 0.10% WO₃ and 240 ppm Mo** from 45 metres and **229 metres at 0.10% WO₃ and 280 ppm Mo** from 1 metres respectively. All three holes were drilled perpendicular to mineralisation and intervals represent true thicknesses. MMCD309 is shown in Figure 1.

Holes that targeted the edge of the deposit intersected narrower zones of tungsten mineralisation, however drilling still intersected multiple tungsten-molybdenum intersections within a 50 to 125 metre envelope (e.g. 124 metres at 0.09% WO₃ and 310 ppm Mo from 10 metres in MMC521).

Of the 3,268 metres from the RC holes and diamond tails being reported, 2,809 metres fell within an intersection greater than 3 metres at 0.05% WO₃ that, in aggregate terms, averaged 0.11% WO₃, 290 ppm Mo, 0.16 ppm Au and 5 ppm Ag. This is consistent with the grade predicted by the 2019 Mineral Resource for blocks greater than 0.05% WO₃.

Lower Tungsten-Molybdenum domain: in addition, the drilling continues to intersect significant polymetallic mineralisation associated with a lower Tungsten-Molybdenum domain that forms a 50 to 120 metre thick zone (Table 3). Significant holes from this zone include 34 metres at 0.12% WO₃ and 800 ppm Mo from 6 metres in MMC540 and 62 metres at 0.08% WO₃ and 780 ppm Mo from 12 metres in MMC520. Again, holes were drilled perpendicular to mineralisation and intervals represent true thicknesses.

The latest assay results show substantial zones of tungsten mineralisation within the 0.05% WO₃ envelope, and continue to illustrate the bulk tonnage nature of the Mulgine Trench deposit. A list of significant results from the RC holes and diamond tails is presented in Table 2. Significant intersections from the lower Tungsten-Molybdenum domain at a 200 ppm Mo lower cut-off are presented in Table 3. Elevated gold intersections greater than 0.10 ppm Au are reported in Table 4. A complete list of intersections greater than 3 metres at 0.05% WO₃, 3 metres at 200 ppm Mo and 10 metres at 0.10 ppm Au or greater than 2 metres at 0.5 ppm Au are listed in Appendix 1, 2 and 3 respectively.

Mulgine Trench Mineral Resource

Resource consultants, Optiro Pty Ltd (Optiro) were engaged to update the Mulgine Trench Mineral Resource with results from the resource definition drilling which commenced in July 2019. The December 2019 Mineral Resource estimate for Mulgine Trench, incorporating the drilling results from the first 123 reverse circulation (RC) holes received to 22 November 2019 (above a 0.05% WO₃ reporting cut-off grade), was as follows:

		M	Iulgine Trench I	nferred Min	eral Resource	e – Decemb	er 2019		
Oxidation	Mt	WO₃ %	WO₃ (t)	Mo ppm	Mo (t)	Au ppm	Au (Oz)	Ag ppm	Ag (MOz)
Oxide	35	0.11	37,000	280	9,700	0.15	160,000	3	3
Fresh	172	0.11	190,000	271	47,000	0.12	690,000	6	32
Total	207	0.11	230,000	272	56,000	0.13	850,000	5	35

Table 1: JORC-2012 Mineral Resource estimates for Mulgine Trench at 0.05% WO₃ reporting cut-off grade

Refer ASX Announcement 19 December 2019, "Major Mineral Resource Estimate Update for Mulgine Trench Deposit". Note: Totals may differ from sum of individual numbers as numbers have been rounded in accordance with the Australian JORC code 2012 guidance on Mineral Resource reporting.

At a 0.05% WO₃ cut-off grade and compared against the November 2014 Mineral Resource estimate for Mulgine Trench, the December 2019 Mineral Resource estimate resulted in a **189% increase in tonnes, an increase of 97% in contained tungsten and an increase of 211% in contained molybdenum.** In addition, gold and silver (accessory minerals) grades defined **850,000 ounces of gold and 35 million ounces of silver**.

The extent of the deportment and recovery of these accessory minerals are presently uncertain. Metallurgical test work to confirm recoveries for all minerals is in progress as part of the PFS programme and will be reported as the relevant information becomes available.

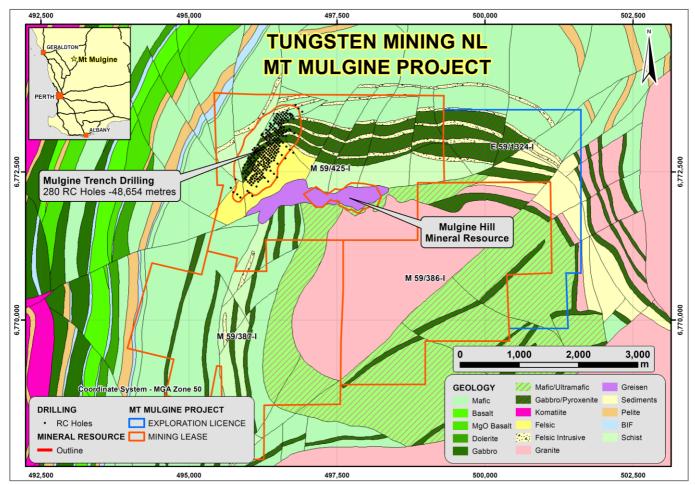


Figure 3. Location of Mulgine Hill and Mulgine Trench Mineral Resources.

The Mt Mulgine Project

The Mt Mulgine Project is located in the Murchison Region of Western Australia, approximately 350km north northeast of Perth. The Company owns 100% of the tungsten and molybdenum rights on a group of tenements that have been the subject of significant previous evaluation for tungsten and molybdenum. The Company also has the rights to all by-products from the mining of tungsten and molybdenum. Near surface Mineral Resources have been delineated at the Mulgine Trench and Mulgine Hill deposits, which have been the subject of ongoing evaluation by the Company (Figure 3).

Tungsten-molybdenum mineralisation at Mt Mulgine is associated with the Mulgine Granite - a high-level leucogranite forming a 2km stock that intrudes the Mulgine anticline (Figure 3). The granite intrudes a greenstone sequence composed of micaceous schists, amphibolite and talc-chlorite schist which were formerly metasediments, mafic and ultramafic rocks respectively. Tungsten-molybdenum mineralisation at Mulgine Trench is associated with altered and quartz veined mafic and ultramafic units that form a 160 metre to 260 metre thick zone over 1.4 kilometres of strike and dips shallowly towards the northwest.

The RC phase of resource definition RC drilling was completed on 21 February 2020 and a small number of diamond tails were completed by 27 February 2020. Resource consultants Optiro Pty Ltd have again been engaged to update the Mulgine Trench Mineral Resource estimate and this commenced in late March. The revised Mineral Resource estimate is scheduled for completion in April 2020 and will be used for pit optimisation and engineering studies as part of the PFS.

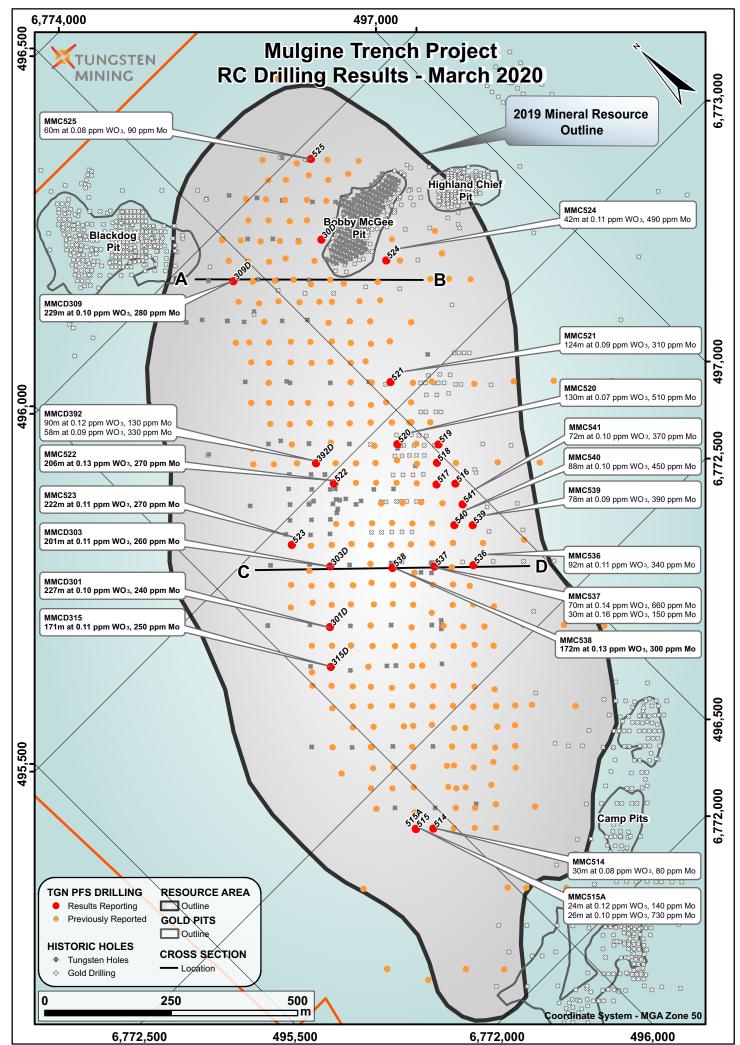


Figure 4. Plan showing location of holes and significant intersections at Mulgine Trench. Assay results currently being reported are red circles and all previously reported assays from the PFS drill program are orange circles. Intersections reported relate to overall mineralised envelope with minor internal waste.

	Mulgin	e Trench Drill	ing - Significa	ant lungsten	Mineralisati	on (within (0.05% WO₃ env	elope)	
		MGA Coo	rdinates				Intersection	ns	
Hole No	Northing	Easting	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC520	6,772,951	496,454	198	-60/135	18	148	130	0.07	510
MMC521	6,773,047	496,531	168	-60/135	10	164	124	0.09	310
MMC522	6,772,985	496,310	234	-75/135	0	206	206	0.13	270
MMC523	6,772,957	496,166	258	-60/135	36	258	222	0.11	270
MMC524	6,773,223	496,695	114	-70/135	0	42	42	0.11	490
MMC536	6,772,675	496,391	103	-60/135	2	94	92	0.11	340
MMC537	6,772,728	496,335	160	-60/135	2	72	70	0.14	660
MMC537					130	160	30	0.16	150
MMC538	6,772,784	496,274	198	-60/135	0	172	172	0.13	300
MMC539	6,772,732	496,446	78	-60/135	0	78	78	0.09	390
MMC540	6,772,758	496,420	102	-60/135	0	88	88	0.10	450
MMC541	6,772,775	496,461	72	-60/135	0	72	72	0.10	370
MMCD301	6,772,789	496,104	309	-90	45	272	227 *	0.10	240
MMCD303	6,772,873	496,189	252	-90	0	201	201 *	0.11	260
MMCD309	6,773,408	496,452	230.33	-60/135	1	230	229 *	0.10	280
MMCD315	6,772,732	496,050	300	-90	76	247	171 *	0.11	250

Table 2: Holes with substantial thicknesses of tungsten mineralisation at Mulgine Trench

2*m* cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Tungsten mineralisation from 0.05% WO₃ envelope with minor zones of interval waste, no top cut grade. True thickness is 90 - 100% and 80 – 90% of intersection length for inclined and vertical holes respectively. Grid coordinates are MGA Zone 50. For a complete list of intersection >3*m* at 0.05% WO₃ refer to Appendix 1. * Previously reported RC hole extended by diamond tail – intersection combination of RC and diamond portion of hole.

Table 3: Holes with substantial molybdenum intersections in drilling at Mulgine Trench

		MGA Coo	ordinates				Intersectio	ns	
Hole No	Northing	Easting	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC515A	6,772,387	495,942	195	-60/135	76	112	36	0.09	600
MMC520	6,772,951	496,454	198	-60/135	12	74	62	0.08	780
MMC521	6,773,047	496,531	168	-60/135	52	98	46	0.08	460
MMC522	6,772,985	496,310	234	-75/135	52	88	36	0.14	360
MMC522					94	128	34	0.15	460
MMC524	6,773,223	496,695	114	-70/135	2	44	42	0.10	500
MMC537	6,772,728	496,335	160	-60/135	0	44	44	0.14	960
MMC539	6,772,732	496,446	78	-60/135	4	42	38	0.10	650
MMC540	6,772,758	496,420	102	-60/135	6	40	34	0.12	800
MMCD030	6,773,343	496,633	158.75	-60/135	60	86	26	0.15	710
MMCD301	6,772,789	496,104	309	-90	176	217	41	0.09	560
MMCD303	6,772,873	496,189	252	-90	159	190	31	0.08	670
MMCD309	6,773,408	496,452	230.33	-60/135	129	149	20	0.15	550
MMCD309					153	181	28	0.09	600
MMCD315	6,772,732	496,050	300	-90	200	215	15	0.18	480

2*m* cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade 200 ppm Mo with up to 2*m* of interval waste, no top cut grade. True thickness is 90 - 100% and 80 – 90% of intersection length for inclined and vertical holes respectively. Grid coordinates are MGA Zone 50.

		Mu	lgine Trend	ch Drilling - S	ignificant	Gold Min	eralisation	(at 0.10 p	pm Au cı	ıt off)	
		MGA Coor	dinates				Int	ersection	s		
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	Au (ppm)	WO₃ (%)	Mo (ppm)	Ag (ppm)
MMC514	6,772,36	495,967	180	-60/135	78	90	12	(ppiii) 0.65	0.06	(ppiii) 590	10.1
MMC515A	6,772,38	495,942	195	-60/135	8	16	8	1.04	0.15	80	2.6
MMC515A		100,012	100	00,100	102	158	56	0.32	0.04	230	2.8
MMC516	6,772,81	496,480	90	-60/135	20	30	10	1.57	0.07	290	4.7
MMC517	6,772,84	496,453	108	-60/135	22	54	32	0.29	0.08	250	5.1
MMC521	6,773,04	496,531	168	-60/135	42	76	34	0.33	0.07	390	11.9
MMC522	6,772,98	496,310	234	-75/135	54	74	20	0.36	0.10	390	6.4
MMC522					80	108	28	0.29	0.13	290	8.5
MMC523	6,772,95	496,166	258	-60/135	140	164	24	0.38	0.08	440	8.6
MMC524					80	102	22	0.58	0.07	280	14.2
MMC525	6,773,47	496,732	132	-60/135	0	30	30	0.50	0.10	70	3.5
MMC525					122	128	6	1.65	0.06	110	5.8
MMC537	6,772,72	496,335	160	-60/135	0	46	46	0.37	0.14	920	4.3
MMC538	6,772,78	496,274	198	-60/135	36	90	54	0.26	0.12	470	9.4
MMCD301	6,772,78	496,104	309	-90	189	195	6	1.40	0.09	470	29.4
MMCD301	^				281	291	10	0.99	0.03	110	9.6
MMCD309	6,773,40	496,452	230.3	-60/135	119	143	24	0.44	0.13	440	9.5
MMCD315	6,772,73	496,050	300	-90	124	150	26	0.31	0.13	150	11.2
MMCD315					266	300	34	0.39	0.07	350	3.3

Table 4 – Elevated gold mineralisation in drilling at Mulgine Trench

2m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF, Mo and Ag by Laser Ablation ICP-MS finish and Au by 40g Fire Assay –ICP-AES finish. Lower cut-off grade 0.10 ppm Au with up to 2m of interval waste, no top cut grade. True thickness is 90 - 100% and 80 – 90% of intersection length for inclined and vertical holes respectively. Grid coordinates are MGA Zone 50. -ENDS-

For further information: Craig Ferrier Chief Executive Officer Ph: +61 8 9486 8492 E: craig.ferrier@tungstenmining.com

Mark Pitts Company Secretary Ph: +61 8 9316 9100 E: mark.pitts@tungstenmining.com.au

This ASX announcement was authorised for release by Craig Ferrier, Chief Executive Officer of Tungsten Mining NL.

Competent Person's Statement

The information in this report that relates to Exploration Results and Data Quality is based on, and fairly represents, information and supporting documentation prepared by Peter Bleakley, who is a Member of the Australasian Institute of Mining and Metallurgy. *Mr* Bleakley is a full-time employee of the Company. *Mr* Bleakley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. *Mr* Bleakley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Mulgine Trench Mineral Resource is extracted from the report titled 'Major Mineral Resource Estimate Update for Mulgine Trench Deposit' released to the ASX on 19 December 2019, available to view at <u>www.tungstenmining.com</u>. Tungsten Mining have drilled an additional 146 RC holes into the Mulgine Trench Mineral Resource. Interpretation of all new data is proceeding and a revised estimate is planned for release in April 2020. Other than the aforementioned review, the Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement and that all material assumptions and technical parameters underpinning the estimates in original ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original ASX announcements.

About Tungsten Mining

Australian tungsten developer, Tungsten Mining NL is an Australian based resources company listed on the Australian Securities Exchange. The Company's prime focus is the exploration and development of tungsten projects in Australia.

Tungsten (chemical symbol W), occurs naturally on Earth, not in its pure form but as a constituent of other minerals, only two of which support commercial extraction and processing - wolframite ((Fe, Mn) WO_4) and scheelite (CaWO₄).

Tungsten has the highest melting point of all elements except carbon – around 3400°C giving it excellent high temperature mechanical properties and the lowest expansion coefficient of all metals. Tungsten is a metal of considerable strategic importance, essential to modern industrial development (across aerospace and defence, electronics, automotive, extractive and construction sectors) with uses in cemented carbides, high-speed steels and super alloys, tungsten mill products and chemicals.

Through exploration and acquisition, the Company has established a globally significant tungsten resource inventory in its portfolio of advanced mineral projects across Australia. This provides the platform for the Company to become a major player within the global primary tungsten market through the development of low-cost tungsten concentrate production.

Appendix 1 Intersections greater than 3 metres at 0.05% WO₃ in Mulgine Trench Drilling

	Mulç	jine Trench D	Prilling - S	ignificant 1	ungsten Mine	eralisation	(>3m at 0.0	5% WO₃ cut o	ff)	
		MGA Coord	inates				Inter	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMC514	6,772,363	495,967	393	180	-60/135	0	30	30	0.08	80
MMC514						34	38	4	0.13	120
MMC514						42	48	6	0.08	140
MMC514						80	88	8	0.08	600
MMC515	6,772,388	495,940	392	56	-60/135	0	34	34	0.13	220
MMC515						50	56	6	0.09	100
MMC515A	6,772,387	495,942	392	195	-60/135	2	26	24	0.12	140
MMC515A						32	36	4	0.17	270
MMC515A						58	62	4	0.14	40
MMC515A						80	106	26	0.10	730
MMC515A						110	116	6	0.07	180
MMC515A						150	156	6	0.06	50
MMC515A						158	162	4	0.07	70
MMC516	6,772,814	496,480	407	90	-60/135	2	64	62	0.09	330
MMC516						82	90	8	0.14	140
MMC517	6,772,840	496,453	406	108	-60/135	14	36	22	0.07	450
MMC517						40	54	14	0.10	200
MMC517						80	86	6	0.11	90
MMC517						96	102	6	0.11	440
MMC518	6,772,869	496,483	409	132	-60/135	0	42	42	0.08	420
MMC518	-, ,	,				74	102	28	0.08	330
MMC518						114	124	10	0.08	280
MMC519	6,772,893	496,511	412	144	-60/135	2	46	44	0.08	440
MMC519	-, ,	, -				66	76	10	0.08	360
MMC519						84	92	8	0.07	230
MMC519						106	112	6	0.05	130
MMC519						118	128	10	0.10	310
MMC520	6,772,951	496,454	408	198	-60/135	0	6	6	0.13	90
MMC520	0,112,001	100,101	100		00,100	18	50	32	0.08	1130
MMC520						54	68	14	0.11	410
MMC520						76	84	8	0.11	160
MMC520						92	96	4	0.08	150
MMC520						108	118	10	0.08	440
MMC520						124	132	8	0.10	200
MMC520						124	132	0 12	0.09	80
MMC520						136	146		0.07	100
								4		
MMC520	0 770 0 47	400 504	400	400	00/405	174	190	16	0.08	160
MMC521	6,773,047	496,531	403	168	-60/135	22	28	6	0.07	170
MMC521						40	56	16	0.09	340
MMC521						66	126	60	0.09	400

	Mulç	gine Trench D	rilling - S	ignificant 1	ungsten Min	eralisation ((>3m at 0.0	5% WO₃ cut o	ff)	
		MGA Coordi	inates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC521						130	156	26	0.13	140
MMC521						158	164	6	0.08	90
MMC522	6,772,985	496,310	402	234	-75/135	0	36	36	0.14	120
MMC522						38	94	56	0.12	270
MMC522						98	120	22	0.22	430
MMC522						128	164	36	0.14	250
MMC522						170	178	8	0.14	240
MMC522						182	206	24	0.11	280
MMC522						220	226	6	0.11	110
MMC523	6,772,957	496,166	399	258	-60/135	8	22	14	0.09	40
MMC523						36	62	26	0.11	40
MMC523						68	90	22	0.16	130
MMC523						94	186	92	0.10	290
MMC523						190	204	14	0.13	310
MMC523						208	258	50	0.14	370
MMC524	6,773,223	496,695	410	114	-70/135	0	42	42	0.11	490
MMC524						50	54	4	0.07	340
MMC524						70	74	4	0.09	140
MMC524						80	84	4	0.16	290
MMC524						90	98	8	0.08	150
MMC525	6,773,470	496,732	404	132	-60/135	0	30	30	0.10	70
MMC525	0,110,110	100,102	101	102		36	60	24	0.07	90
MMC525						90	98	8	0.10	80
MMC525						104	126	22	0.09	90
MMC536	6,772,675	496,391	409	103	-60/135	2	56	54	0.09 0.12	470
MMC536	0,112,013	+30,331	403	105	-00/100	74	94	20	0.12	180
MMC537	6,772,728	496,335	409	160	-60/135	2	72	70	0.10	660
MMC537	0,772,720	490,333	409	100	-00/133	88	92		0.14	150
								4		
MMC537						100	106	6	0.08	760
MMC537						118	124	6	0.05	260
MMC537	0 770 70 4	100.074	400	100	00/405	130	160	30	0.16	150
MMC538	6,772,784	496,274	402	198	-60/135	0	172	172	0.13	300
MMC538						184	188	4	0.08	30
MMC539	6,772,732	496,446	413	78	-60/135	0	56	56	0.10	480
MMC539						70	78	8	0.12	140
MMC540	6,772,758	496,420	413	102	-60/135	0	48	48	0.12	640
MMC540						52	56	4	0.08	180
MMC540						72	88	16	0.13	160
MMC541	6,772,775	496,461	411	72	-60/135	0	72	72	0.10	370
MMCD030	6,773,343	496,633	405	158.7	-60/135	0	72	72	0.16	210
MMCD030					Incl.	68	69	1	2.17	320
MMCD030						86	102	16	0.09	500
MMCD030						117	129	12	0.09	180

	Mulç	gine Trench D	rilling - S	ignificant 1	ungsten Min	eralisation	(>3m at 0.05	5% WO₃ cut o	ff)	
		MGA Coordi	nates				Inter	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMCD030	()	(,	()	()	,	133	141	8	0.10	120
MMCD301	6,772,789	496,104	394	309	-90	4	12	8	0.06	80
MMCD301						45	66	21	0.12	100
MMCD301						71	78	7	0.09	90
MMCD301						83	86	3	0.18	90
MMCD301						90	129	39	0.12	50
MMCD301						135	162	27	0.15	240
MMCD301						166	179	13	0.12	240
MMCD301						183	196	13	0.09	470
MMCD301						207	216	9	0.00	370
MMCD301						207	210	9	0.13	180
MMCD301						210	238	14	0.20	310
MMCD301						224.2	236	30	0.13	290
								30		
MMCD301						296	303		0.07	110
MMCD301	0.770.070	400.400	0.07	050		304	309	5	0.14	200
MMCD303	6,772,873	496,189	397	252	-90	0	21	21	0.10	70
MMCD303						24	27	3	0.06	50
MMCD303						32	125	93	0.13	170
MMCD303						133	141	8	0.12	400
MMCD303						145	150	5	0.09	230
MMCD303						153	159	6	0.09	320
MMCD303						162	180	18	0.11	680
MMCD303						187	202	15	0.19	370
MMCD303					Incl.	192	193	1	1.96	200
MMCD303						219	226	7	0.13	150
MMCD309	6,773,408	496,452	401	230.3	-60/135	1	31	30	0.11	30
MMCD309						37	84	47	0.11	110
MMCD309						90	101	11	0.07	270
MMCD309						103	118	15	0.11	180
MMCD309						123	131	8	0.07	270
MMCD309						132	146	14	0.19	620
MMCD309					Incl.	142	143	1	1.59	440
MMCD309						150	163	13	0.10	740
MMCD309				+		166	183	17	0.10	370
MMCD309				+		191	230.33	39	0.12	470
MMCD315	6,772,732	496,050	394	300	-90	8	14	6	0.06	110
MMCD315		,		-		52	56	4	0.06	20
MMCD315						58	64	6	0.07	50
MMCD315						76	104	28	0.09	40
MMCD315						106	169	63	0.03 0.14	110
MMCD315						175	190	15	0.14	280
MMCD315						175		13	0.11	
					Inal		205			530
MMCD315					Incl.	212	213	1	1.01	670

	Mulg	jine Trench D	Prilling - Si	ignificant T	ungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut o	ff)	
		MGA Coord	inates				Inter	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMCD315						209	215	6	0.26	450
MMCD315						221	226	5	0.17	340
MMCD315						228	235	7	0.09	540
MMCD315						239	247	8	0.09	360
MMCD315						251	254	3	0.10	150
MMCD315						270	273	3	0.23	350
MMCD315						288	299	11	0.09	130
MMCD392	6,773,038	496,313	399	254.8	-60/135	4	94	90	0.12	130
MMCD392						102	108	6	0.07	230
MMCD392						112	118	6	0.10	540
MMCD392						138	150	12	0.09	660
MMCD392						160	174	14	0.16	220
MMCD392						180	196	16	0.07	170
MMCD392						202	205	3	0.14	30
MMCD392						231	236	5	0.06	60
MMCD392						238	251	13	0.10	90

2m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade 0.05% WO₃ with up to 2m of interval waste, no top cut grade. True thickness is 90 - 100% and 80 – 90% of intersection length for inclined and vertical holes respectively. Grid coordinates are MGA Zone 50.

Appendix 2

Intersections greater than 2 metres at 200 ppm Mo in Mulgine Trench Drilling

	Mulgine 1	Trench Drillin	g - Signifio	cant Molybd	enum Minera	lisation (>	3m at 200) ppm Mo cut	off)	
		MGA Coord	linates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC514	6,772,363	495,967	393	180	-60/135	62	74	12	0.04	340
MMC514						78	88	10	0.07	700
MMC515	6,772,388	495,940	392	56	-60/135	0	8	8	0.13	390
MMC515						32	36	4	0.05	560
MMC515A	6,772,387	495,942	392	195	-60/135	0	6	6	0.08	380
MMC515A						44	48	4	0.05	210
MMC515A						76	112	36	0.09	600
MMC516	6,772,814	496,480	407	90	-60/135	0	30	30	0.10	390
MMC516						38	54	16	0.08	450
MMC516						62	66	4	0.04	280
MMC516						78	84	6	0.07	250
MMC517	6,772,840	496,453	406	108	-60/135	0	26	26	0.06	840
MMC517						34	42	8	0.05	380
MMC517						60	64	4	0.06	270
MMC517						66	72	6	0.05	250
MMC517						96	108	12	0.07	340
MMC518	6,772,869	496,483	409	132	-60/135	0	36	36	0.08	460
MMC518						40	50	10	0.05	500
MMC518						62	66	4	0.06	400
MMC518						70	78	8	0.05	620
MMC518						88	102	14	0.09	460
MMC518						114	118	4	0.10	460
MMC518						126	132	6	0.01	260
MMC519	6,772,893	496,511	412	144	-60/135	0	60	60	0.07	400
MMC519						72	90	18	0.05	360
MMC519						126	130	4	0.06	250
MMC519						140	144	4	0.05	220
MMC520	6,772,951	496,454	408	198	-60/135	12	74	62	0.08	780
MMC520						82	92	10	0.06	710
MMC520						102	112	10	0.06	770
MMC520						174	180	6	0.06	230
MMC520						194	198	4	0.04	220
MMC521	6,773,047	496,531	403	168	-60/135	6	12	6	0.04	260
MMC521						26	36	10	0.04	480
MMC521						42	46	4	0.10	420
MMC521						52	98	46	0.08	460
MMC521						110	130	20	0.07	430
MMC522	6,772,985	496,310	402	234	-75/135	52	88	36	0.14	360
MMC522						94	128	34	0.15	460
MMC522						132	142	10	0.09	470

	Mulgine ⁻	Trench Drillin	g - Signifi	cant Molybd	lenum Minera	lisation (>	3m at 200) ppm Mo cut	off)	
		MGA Coord	linates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
MMOEDD	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC522						146	150	4	0.18	330
MMC522						174	180	6	0.09	330
MMC522						192	210	18	0.08	370
MMC523	6,772,957	496,166	399	258	-60/135	106	110	4	0.17	250
MMC523						128	136	8	0.15	660
MMC523						140	150	10	0.07	730
MMC523						154	160	6	0.14	360
MMC523						176	200	24	0.07	460
MMC523						204	216	12	0.15	720
MMC523						222	228	6	0.20	300
MMC523						232	238	6	0.07	900
MMC523						244	248	4	0.11	280
MMC523						252	258	6	0.07	250
MMC524	6,773,223	496,695	410	114	-70/135	2	44	42	0.10	500
MMC524						50	54	4	0.07	340
MMC524						80	90	10	0.08	410
MMC524						96	100	4	0.04	320
MMC525	6,773,470	496,732	404	132	-60/135	32	36	4	0.02	210
MMC536	6,772,675	496,391	409	103	-60/135	2	22	20	0.10	430
MMC536						26	38	12	0.14	950
MMC536						42	62	20	0.12	270
MMC536						78	86	8	0.28	230
MMC536						92	102	10	0.05	490
MMC537	6,772,728	496,335	409	160	-60/135	0	44	44	0.14	960
MMC537						52	56	4	0.07	350
MMC537						60	64	4	0.11	520
MMC537						70	88	18	0.05	400
MMC537						96	108	12	0.06	590
MMC537						110	118	8	0.04	240
MMC537						120	124	4	0.05	350
MMC537						140	144	4	0.00	210
MMC538	6,772,784	496,274	402	198	-60/135	4	8	4	0.22	220
MMC538	5,112,107	100,217	102	100	30,100	14	18	4	0.22	280
MMC538						20	24	4	0.23	220
MMC538						38	58	20	0.15	510
MMC538						64	90	20	0.11	550
MMC538						96	100	4	0.13	260
MMC538						108	120	12	0.09	400
MMC538	0.770.755	400.415			00//07	128	150	22	0.10	350
MMC539	6,772,732	496,446	413	78	-60/135	4	42	38	0.10	650
MMC539						60	64	4	0.04	250
MMC540	6,772,758	496,420	413	102	-60/135	6	40	34	0.12	800
MMC540						50	54	4	0.06	230

	Mulgine 7	Trench Drillin	g - Signifi	cant Molybde	enum Minera	lisation (>	·3m at 200) ppm Mo cut	off)	
		MGA Coord	linates				Inter	sections		-
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMC540		. ,	. ,			58	66	8	0.04	500
MMC540						74	78	4	0.08	380
MMC540						96	102	6	0.04	290
MMC541	6,772,775	496,461	411	72	-60/135	0	38	38	0.12	510
MMC541						44	56	12	0.09	320
MMCD030	6,773,343	496,633	405	158.75	-60/135	60	86	26	0.15	710
MMCD030						97	104	7	0.08	1540
MMCD301	6,772,789	496,104	394	309	-90	143	149	6	0.15	800
MMCD301						176	217	41	0.09	560
MMCD301						227	234	7	0.13	500
MMCD301						241	255	14	0.09	630
MMCD301						274	280	6	0.02	810
MMCD301						306	309	3	0.17	270
MMCD303	6,772,873	496,189	397	252	-90	52	57	5	0.25	380
MMCD303						67	71	4	0.11	820
MMCD303						129	141	12	0.10	360
MMCD303						152	156	4	0.07	480
MMCD303						159	190	31	0.08	670
MMCD303						195	200	5	0.09	780
MMCD303						218	221	3	0.11	300
MMCD309	6,773,408	496,452	401	230.33	-60/135	80	86	6	0.06	370
MMCD309	, ,	,				95	100	5	0.06	520
MMCD309						129	149	20	0.15	550
MMCD309						153	181	28	0.09	600
MMCD309						185	189	4	0.04	650
MMCD309						206	228	22	0.12	550
MMCD315	6,772,732	496,050	394	300	-90	126	132	6	0.13	350
MMCD315	, ,	,				169	181	12	0.07	590
MMCD315						185	199	14	0.10	600
MMCD315						200	215	15	0.18	480
MMCD315						222	236	14	0.10	560
MMCD315						241	244	3	0.04	820
MMCD315						266	275	9	0.09	800
MMCD315						284	288	4	0.03	320
MMCD315						297	300	3	0.07	240
MMCD392	6,773,038	496,313	399	254.85	-60/135	0	8	8	0.07	350
MMCD392	0,110,000	100,010	000		00,100	60	64	4	0.06	210
MMCD392						86	104	18	0.00	310
MMCD392						106	110	4	0.07	230
MMCD392						112	128	16	0.05	450
MMCD392						130	120	28	0.05	450 660
MMCD392 MMCD392						160	164	4	0.08	240
MMCD392 MMCD392						180	184	4	0.08	240
10110100392						100	104	4	0.00	200

		MGA Coord	dinates				Inter	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMCD392						192	196	4	0.09	210
MMCD392						209	216	7	0.03	260
MMCD392						226	229	3	0.04	350
2m cone split MS. Lower cl intersection le	ut-off grade 20	0 ppm Mo wit	h up to 3m	of interval w	aste, no top	cut grade.	True thic			

Appendix 3

Intersections greater than 10 metres at 0.10 ppm Au or greater than 2 metres at 0.50 ppm Au in Mulgine Trench Drilling

	Mul	lgine Trench	Drilling - S	Significant Go	old Minera	lisation (at 0.10 ppm	Au cut o	ff)		
		MGA Coord	dinates				Int	ersection	s		
Hole No	Northing	Easting	Depth	Dip/	From	То	Interval	Au	WO ₃	Мо	Ag
	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(ppm)	(%)	(ppm)	(ppm)
MMC514	6,772,363	495,967	180	-60/135	62	74	12	0.28	0.04	340	6.8
MMC514					78	90	12	0.65	0.06	590	10.1
MMC515A	6,772,387	495,942	195	-60/135	8	16	8	1.04	0.15	80	2.6
MMC515A				Incl.	12	14	2	3.56	0.14	110	4.5
MMC515A					78	90	12	0.20	0.08	420	5.1
MMC515A					102	158	56	0.32	0.04	230	2.8
MMC516	6,772,814	496,480	90	-60/135	0	10	10	0.17	0.08	560	0.9
MMC516					20	30	10	1.57	0.07	290	4.7
MMC516					50	68	18	0.21	0.07	160	4.7
MMC517	6,772,840	496,453	108	-60/135	22	54	32	0.29	0.08	250	5.1
MMC518	6,772,869	496,483	132	-60/135	20	38	18	0.31	0.08	400	6.3
MMC518					44	54	10	0.19	0.04	440	3.4
MMC518					88	100	12	0.22	0.09	440	6.0
MMC518					106	120	14	0.12	0.06	360	3.6
MMC519	6,772,893	496,511	144	-60/135	26	40	14	0.18	0.07	280	6.2
MMC520	6,772,951	496,454	198	-60/135	8	18	10	0.20	0.02	320	5.4
MMC520					24	52	28	0.25	0.08	1040	10.2
MMC521	6,773,047	496,531	168	-60/135	24	34	10	0.17	0.05	440	2.7
MMC521					42	76	34	0.33	0.07	390	11.9
MMC521					148	158	10	0.14	0.05	130	8.9
MMC522	6,772,985	496,310	234	-75/135	54	74	20	0.36	0.10	390	6.4
MMC522					80	108	28	0.29	0.13	290	8.5
MMC522					198	210	12	0.16	0.09	330	10.5
MMC523	6,772,957	496,166	258	-60/135	52	62	10	0.16	0.13	40	3.5
MMC523					76	80	4	1.08	0.24	50	8.2
MMC523					140	164	24	0.38	0.08	440	8.6
MMC524	6,773,223	496,695	114	-70/135	14	36	22	0.30	0.12	570	5.7
MMC524					80	102	22	0.58	0.07	280	14.2
MMC525	6,773,470	496,732	132	-60/135	0	30	30	0.50	0.10	70	3.5
MMC525					122	128	6	1.65	0.06	110	5.8
MMC537	6,772,728	496,335	160	-60/135	0	46	46	0.37	0.14	920	4.3
MMC537					134	150	16	0.19	0.16	190	3.0
MMC538	6,772,784	496,274	198	-60/135	20	30	10	0.20	0.13	200	4.5
MMC538					36	90	54	0.26	0.12	470	9.4
MMC538					104	114	10	0.20	0.12	380	8.6
MMC538					154	172	18	0.21	0.15	120	3.9
MMC539	6,772,732	496,446	78	-60/135	0	24	24	0.35	0.09	590	2.1
MMC540	6,772,758	496,420	102	-60/135	18	56	38	0.21	0.11	540	7.5
MMC540					78	92	14	0.21	0.11	100	6.1
MMC541	6,772,775	496,461	72	-60/135	20	34	14	0.18	0.17	530	2.1
MMC541					42	58	16	0.25	0.09	280	5.1
MMCD030	6,773,343	496,633	158.7	-60/135	91	104	13	0.33	0.07	880	19.0

	Mulgine Trench Drilling - Significant Gold Mineralisation (at 0.10 ppm Au cut off)										
MGA Coordinates			Intersections								
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	Au (ppm)	WO₃ (%)	Mo (ppm)	Ag (ppm)
MMCD301	6,772,789	496,104	309	-90	108	127	19	0.33	0.13	50	10.0
MMCD301					189	195	6	1.40	0.09	470	29.4
MMCD301					243	253	10	0.35	0.10	530	7.0
MMCD301					281	291	10	0.99	0.03	110	9.6
MMCD301					298	308	10	0.39	0.09	250	3.8
MMCD303	6,772,873	496,189	252	-90	127	149	22	0.32	0.08	260	7.0
MMCD309	6,773,408	496,452	230.3	-60/135	11	28	17	0.22	0.10	20	2.5
MMCD309					119	143	24	0.44	0.13	440	9.5
MMCD309					147	157	10	0.20	0.10	290	13.9
MMCD315	6,772,732	496,050	300	-90	124	150	26	0.31	0.13	150	11.2
MMCD315					225	236	11	0.30	0.07	590	6.0
MMCD315					237	247	10	0.32	0.08	310	5.1
MMCD315					266	300	34	0.39	0.07	350	3.3

2m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF, Mo and Ag by Laser Ablation ICP-MS finish and Au by 40g Fire Assay –ICP-AES finish. Lower cut-off grade 0.10 ppm Au with up to 2m of interval waste, no top cut grade. True thickness is 90 - 100% and 80 – 90% of intersection length for inclined and vertical holes respectively. Grid coordinates are MGA Zone 50.

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary		
Sampling techniques	Notice and quality of severilized for a state severile	During August 2016, Tungsten Mining NL ("TGN") drilled 9 RC holes for 476 metres and one large diameter (PQ) diamond hole for 31.6 metres at Mulgine Trench to test tungsten mineralisation adjacent to and beneath the Bobby McGee pit		
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	In September 2018, TGN drilled 4 PQ diamond holes (528.2 m) into the Trench deposit to collect metallurgical samples and twin RC and diamond holes.		
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	From 12 July 2019 to present, the Company has drilled 280 RC holes for 47,983 metres (47,388 metre of RC drilling, 595 metres HQ diamond tails). At the time of writing, Tungsten Mining had received results from all holes and results reported in this announcement relate to the last 19 RC holes and 7 diamond tails for this program.		
		TGN drillhole collar locations were picked up by a licenced surveyor using a Topcon GNSS with manufacturer's specifications of +/- 10mm N,E and +/15mm Z.		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Downhole surveying was measured by the drill contractors using a Champ North Seeking solid state gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.		
	representivity and the appropriate calibration of any measurement tools or systems used	Certified standards were inserted into the sample sequences in according to TGN QAQC procedures. Duplicate samples were collected to check repeatability of sampling and variability or nugget effect for tungsten mineralisation. Blanks were inserted into the sample stream behind high- grade samples to test contamination. Results from this QAQC sampling were considered good.		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Given the style of mineralisation present at Mulgine Trench, Tungsten Mining ran an orientation survey to determine the acceptability of 2m sampling intervals. From this orientation work, it was concluded there was no discernible evidence that increasing the downhole sample interval from one to two metres materially impacts either accuracy or precision of the assay results.		
		RC holes MMC265 – MMC291 and MMC301 – MMC309 were sampled at 1 m intervals from the cyclone and split using a cone splitter immediately beneath the cyclone to produce two representative 3 - 5 kg 1m-samples in calico bags.		
		For all remaining holes, samples were split using a cone splitter to produce two representative 3 - 5 kg 2m-samples in calico bags. The bulk reject material was collected at 1 m intervals from the cyclone and placed on the ground for geological logging.		
		The cone splitter was cleaned by hosing with pressurised air to eliminate sample contamination. Two samples were collected; one is used for analysis and the other is retained as a reference or for possible re-analysing / QAQC activities.		
		Samples from the current drilling programme were submitted to Bureau Veritas Minerals Pty Ltd of Canningvale, WA, for a standard XRF Tungsten Suite and 40 gram fire assay for gold analysis. A second suite of elements including silver and molybdenum were analysed by Laser Ablation ICP-MS.		
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	TGN completed 280 RC drillholes with depths ranging from 6 to 309 m, averaging 170 m. RC drilling used a face-sampling hammer that produced a nominal 140 mm diameter hole. Seven holes were extended with HQ diamond tails (595 m). TGN diamond and RC holes were surveyed in-rods at 20 - 30 m intervals using a North Seeking gyroscopic probe.		

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample	RC recovery was visually assessed, recorded on drill logs and considered to be acceptable.
	recoveries and results assessed	Diamond core recovery is logged and recorded in the database. No significant core loss issues exist.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	RC samples collected by TGN were visually checked for recovery, moisture and contamination. A cyclone and cone splitter was used to provide a uniform sample and these wer routinely cleaned. The drill contractor blew out the hole at the beginning of each drill rod to remove excess water and maintain dry samples.
		Diamond core was reconstructed into continuous runs for orientation marking, depths being checked against the depth marked on the core blocks and core recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Ground conditions for RC drilling were good and drilling returned consistent size samples. All RC samples were dry and contamination would be minimal. No significant bias is expected, and any potential bias is not considered material a this stage.
	ade to preferentiariossygain of fine/course material.	Sample recovery for diamond holes is very high (close to 100%).
Logging		TGN uses specially designed drill logs for tungsten mineralisation to capture the geological data. During logging part of the RC sample is washed, logged and placed into chip trays.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	During the 2019/2020 drilling programme, a second set of partially sieved material is stored in chip trays for mineral identification by a near-IR spectral scanner (PANalytical TerraSpec Halo).
		The washed chip trays are stored in sea containers on site an Halo chip trays stored at TGN's Gnangara warehouse.
		Diamond core was geotechnically logged for recovery and RQD. Information on structure, lithology and alteration zon- are recorded. Diamond core trays are stored at TGN's Wangara warehouse for future reference. A complete set of high-quality natural light and UV light photographs are take of all core and these are kept on TGN server.
		All drill data is digitally captured and stored in a central database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC chip and diamond core logging included records of lithology, mineralogy, textures, oxidation state and colour. Key minerals associated with tungsten mineralisation and veining are recorded.
	The total length and percentage of the relevant intersections logged	All TGN drill holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	For the seven HQ diamond tails core was cut in half by an Almonte core saw and 1 metre samples of half core were submitted to Bureau Veritas Minerals Pty Ltd of Canning Val WA for XRF analysis for tungsten, Laser Ablation ICP-MS technique for silver and molybdenum and Fire Assay for gold
	lf non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	TGN RC samples were collected on the rig by a cyclone. Material was split by a cone splitter immediately beneath the cyclone to produce two 3 - 5 kg samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples from the current drilling programme were submitte to Bureau Veritas Minerals Pty Ltd of Canning Vale, WA and dried, split if over 2.5 kg and pulverised in robotic vibrating disc pulveriser.

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	TGN's QAQC procedures included the insertion of field duplicates, blanks and commercial standards. Duplicates, blanks and standards were inserted at intervals of one in 25. Geological logging and UV lamping was used to ensure duplicate and blank samples were from mineralised intervals.
	Measures taken to ensure that the sampling is	TGN inserted 1 in 25 RC field duplicates taken from 1 m or 2 m cone split samples at the rig. Repeatability in RC duplicate samples was found to be excellent for tungsten, molybdenum and silver. Gold had a higher degrees of scatter associated with the nuggetty nature of gold mineralisation.
	representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	Four PQ diamond holes and seven RC hole have twinned other RC and diamond drilling at Mulgine Trench. These holes intersected similar grade and thickness of WO ₃ , Mo, Au and Ag mineralisation at target depths. Individual high grade zones did demonstrate the particulate or nuggetty nature of mineralisation present.
		Assays from duplicate samples showed a low - moderate scatter (R ² 0.81) for tungsten with no systematic bias. This is consistent with the style of mineralisation present, coarse grained scheelite associated with quartz veining.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Molybdenum and silver results from duplicate samples showed good correlation with an R ² of 0.93 and 0.91 respectively.
		Gold results from duplicate samples showed a higher degree of scatter with an R ² of 0.63. This is interpreted to be related to the nugget effect or particulate nature of gold mineralisation at Mulgine Trench.
		The larger sample size of approximately 40 kg per metre collected by RC drilling is considered more appropriate than small diameter diamond holes and therefore sample sizes are considered to be acceptable to accurately represent the tungsten, molybdenum, silver and gold mineralisation present at Mulgine Trench
Quality of assay data and laboratory tests		TGN assays samples for a tungsten suite by XRF. XRF has proven to be a very accurate analytical technique for a wide range of base metals, trace elements and major constituents found in rocks and mineral materials. Glass fusion XRF is utilised for assaying, since it provides good accuracy and precision; it is suitable for analysis from very low levels up to very high levels.
		Gold was assayed by 40g charge lead collection fire assay with silver used as secondary collector. Fire assay is regarded as the preferred method for quantitative gold analysis.
		For Phase 1 drilling, a suite of 40 elements including tungsten, molybdenum and silver were assayed by Fused Bead Laser Ablation ICP-MS. The XRF disk is laser ablated and the gas formed is introduced to the Mass Spectrometer, providing an ideal platform for analysis. The Fused Bead Laser Ablation ICP-MS technique is total digestion of the sample achieved through the fusion process, so quantifiable elemental data is produced at detection limits that are equal if not better than acid digest techniques.
		Phase 2 holes (including results currently being reported) were assayed for the tungsten suite by XRF, gold by fire assay and a reduced suite of elements including molybdenum and silver by Fused Bead Laser Ablation ICP-MS.

Criteria	JORC Code explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld magnetic susceptibility meter (KT-10) was used to measure magnetic susceptibility for every sample. Data is stored in the database. A near-IR spectral scanner (PANalytical TerraSpec Halo) was utilised for mineral identification to assist in defining geometallurgical domains in the Phase 1 2019 drilling programme. Partially sieved material was collected, stored in chiptrays and scanned.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Field QAQC procedures for TGN sampling included the insertion of blanks, commercial standards and duplicates at the rate of one in 25 samples. Assay results have demonstrated acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	RSC Mining and Mineral Exploration have conducted a review of field procedures, laboratory techniques and QAQC samples. A report on this work is in the process of being completed. TGN personnel have conducted a review of all assaying by visual inspection of UV core photography and UV estimates for RC drilling against the drill database.
	The use of twinned holes.	TGN drilled four PQ diamond holes and 7 RC holes that twinned existing RC and diamond drilling at Mulgine Trench. Twin holes intersected similar widths and grades for mineralisation. High grade zones were however found to be variable or nuggety.
		Logging conducted by TGN takes place at the drilling site. Ruggedised computers are used to record the logging for RC samples. Diamond logging is onto paper drill logs and data entered in Perth.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	A set of standard Excel templates are used to capture the data. Data was validated on-site by the supervising geologist before being sent to Perth office. It was then loaded into Micromine and validated for logging codes, missing intervals, overlapping intervals, hole location and downhole surveying. Validated data is then loaded into a relational database for storage.
	Discuss any adjustment to assay data.	No adjustments were made, other than for values below the assay detection limit which have been entered as half of the detection limit.
Location of data points	Accuracy and quality of surveys used to locate drillholes	Holes drilled by TGN were picked up by a licenced surveyor using a Topcon GNSS with manufacturer's specifications of +/· 10mm N,E and +/15mm Z.
	(collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Downhole surveying of TGN holes was measured by the drill contractors using a North Seeking solid state gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.
	Specification of the grid system used.	Geocentric Datum of Australia 1994 (GDA94) - Zone 50.
	Quality and adequacy of topographic control.	High resolution aerial photography and digital elevation survey was flown by Geoimage Pty Ltd on 18 February 2018 with expected height accuracy of +/- 0.5 m.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill spacing has been closed to a 40 metre by 40 metre pattern over areas of interest. Strike extensions are tested by 160 metres spaced section with 40 to 80 metre spaced holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill spacing at Mulgine Trench was sufficient to define an Inferred Mineral Resource reported in December 2019. TGN have drilled an additional 146 holes into Mulgine Trench since this estimate.
	Whether sample compositing has been applied.	For non-mineralised intervals 1 m samples collected from the cyclone were composited into 5 m and later 6 m composite samples for RC drilling. Where composite samples have anomalous tungsten and/or molybdenum, the 1 m or 2 m cone split samples have been submitted for analysis.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of drilling was designed to intersect mineralisation perpendicular to the dominant vein geometry and mineralised stratigraphy. Holes drilled at -60 degree towards the southeast intersect dominant vein sets and stratigraphy at 90 degrees.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Structural logging of diamond core and structural data collected during optical/acoustic logging of selected RC holes has confirmed that drill orientation did not introduce any bias regarding the orientation of mineralised veining.
Sample security	The measures taken to ensure sample security.	Samples collected by TGN were securely sealed and stored on site and delivered by courier to the laboratory in Perth. Sample submissions forms used to track samples were emailed directly to the laboratory.
		RSC Mining and Mineral Exploration have conducted a review of field procedures, laboratory techniques and QAQC samples. A report on this work is in the process of being completed.
Audits or reviews	The results of any audits or reviews of sampling	Internal Company audits for both historical and current Company drilling are carried out to ensure drilling and sampling techniques are consistent with industry standards, consistency of data is validated by TGN while loading into the database. Any data which fails the database constraints and cannot be loaded is returned for validation. Global consistency is audited by plotting sections using the database and reconciling assays.
	techniques and data.	During drilling the Company inserts standards, duplicates and blanks into the sample stream. These QAQC samples are periodically reviewed and any issues addressed. Tungsten Mining also conducted a thorough review of historical data that included checking of assay results, twinning of holes and checking drilling against historical reports. Any errors identified were corrected in the database.
		For TGN drilling, assay results are visually compared against UV estimates for tungsten and visual estimates.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary		
fineral tenement nd land tenure tatus	Type, reference name/number, location and	The Mulgine Trench prospect is located on Mining Lease M59/425-I covering an area of approximately 9.4 km ² . TGN has 100% of the mineral rights for tungsten and molybden and to all by-products from the mining of tungsten and molybdenum. The current registered holder of the teneme is Minjar Gold Pty Ltd.		
	ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The normal Western Australian state royalties apply.		
		The Federal Court has determined that Native Title does not exist over the area of M59/425-I in relation to Badamia clain (Federal Court # WAD6123/1998).		
		M59/425-I is located on former pastoral lease 'Warriedar Station' which has been purchased by the State Government and now forms part of the Karara Rangeland Park. Other operating mines are also located within the Park boundary.		
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing at the time of reporting. Mid-West Tungsten Pty Ltd, a wholly owned subsidiary of Tungsten Mining NL, holds a consent caveat over tenement M59/425-I.		

Criteria	JORC Code explanation	Commentary
Exploration done by other parties		Tungsten Drilling Drilling initially focused on tungsten mineralisation with Minefields and ANZECO drilling 77 NQ/BQ diamond drillholes (8,703 m DD, 1,871 m pre-collars) in the 1970s and 1980s.
		In 2014, Minjar Ltd drilled 27 RC exploration hole (1,680 m) northwest of the Bobby McGee and 160 RC holes (5,712 m) for grade control in the Bobby McGee pit. Hazelwood Resources Ltd assayed these holes for their standard XRF tungsten suite.
	Acknowledgment and appraisal of exploration by other parties.	Gold Drilling In 1993, focus then turned onto gold exploration and multiple phases of dominantly RC drilling and minor diamond drilling was completed by numerous companies to present. A total of 342 RC holes (19,429 m) and 3 diamond holes (828 m) have been drilled to evaluate gold at Mulgine Trench. During mining, an additional 279 RC grade control holes (8,982 m) were drilled at the Camp and Highland Chief pits.
		Exploration drilling consisting of 422 RAB (11,374 m) holes were drilled across the Trench Deposit and strike extensions.
		TGN have conducted a thorough review of all drilling and sampling procedures.
Geology	Deposit type, geological setting and style of mineralisation.	Mulgine Trench Stratigraphy for the Mulgine Trench deposit consists of a hangingwall amphibolites, the main mineralised horizon and footwall greisen of the Mulgine Granite. The mineralised horizon is a 160 to 260 metre thick zone that is delineated over 1.4 kilometres of strike and dips shallowly (25 – 40 degrees) towards the northwest.
		Tungsten and molybdenum mineralisation dominantly occurs as scheelite and molybdenite in foliation parallel veins or adjacent to vein margins or as coatings on fractures or disseminated in greisen units/veins.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Collar data for drilling is included in Appendix A.
Data aggregation methods		To highlight the extent of mineralisation present at Mulgine Trench, the 0.05% WO ₃ mineralised envelope is reported in Table 1 that includes minor zones of internal waste (<10m) relative to the entire mineralised package. WO ₃ and Mo grades are reported separately for intersections.
	In reporting Exploration Results, weighting averaging	Intersections were reported using a lower cut-off grade of 0.05% WO ₃ . WO ₃ and Mo grades are reported separately for intersections. No top cut and up to 2m of internal waste were included.
	techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	A second set of intersections were reported using a lower cut- off grade of 200 ppm Mo. Again WO_3 and Mo grades are reported separately for intersections. No top cut and up to 2m of internal waste were included.
		A third set of intersections were reported using a lower cut-off grade of 0.10 ppm Au. WO_3 , Mo and Ag grades are reported separately for these intersections. Only intersections greater than 10m at 0.10 ppm Au or greater than 2m at 0.50 ppm Au were reported. No top cut and up to 2m of internal waste were included.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	For reporting of tungsten intersections, all assays >1.0% WO ₃ are reported beneath the relevant intersection. Interval zones of waste up to 2m wide are included in intersections provided the adjacent zone and waste are >0.05% WO ₃ .

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, no metal equivalents were quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Inclined holes will intersect mineralisation at between 80° - 90°. True thickness will be between 90 to 100% of the intersection thickness for inclined holes. Vertical holes will intersect mineralisation at between 60° - 70° and true thickness is 80 – 90% of intersection length.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Intersections greater than 3m at 0.05 WO ₃ at Mt Mulgine are reported and holes with no significant mineralisation are documented in Appendix 1. A second list of all Intersections greater than 3m at 200 ppm Mo at Mt Mulgine is reported in Appendix 2. A third list of all Intersections greater than 10m at 0.10 ppm Au or greater than 2m at 0.50 ppm Au at Mt Mulgine is reported in Appendix 3.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Mineralogical and metallurgical studies on the Mulgine Trench deposit show scheelite well liberated at coarse sized fractions resulting in good recoveries via a simple gravity circuit. Molybdenum was liberated at finer sized fractions and showed high recovery and upgrades through a flotation circuit. Comminution work showed all ore types were of moderate to high hardness. An extensive geo-metallurgical program has commenced to understand the range of ore types in the Trench deposit and their volumes. This will provide the basis to produce a representative master composite to complete the metallurgical testwork program. Metallurgical test work has shown that the ore as represented by the samples tested, should be readily concentrated to exceed the target of +60% WO₃ concentrate. Levels of potential deleterious contaminants reporting to the final concentrate are expected to be below the minimum threshold for specific APT conversion processes. Evidence gathered to date show that no major metallurgical problems are expected to affect the overall viability of the project.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 TGN are currently undertaking a Pre-Feasibility Study on the greater Mt Mulgine Project incorporating the Mulgine Trench and Mulgine Hill deposits. Planned activities include: Completion of a revised Mineral Resource estimate using all new drilling completed since December 2019; Mine design and optimisation of the mining schedule, geotechnical studies and definition of maiden ore reserves; Metallurgical test work on the material from Trench; Process design and engineering for the tungsten processing plant and associated non-process infrastructure; Assessment of existing and exploration for additional ground water resources; and Completion of native flora, fauna, aboriginal heritage surveys and regulatory approval processes.