

3 November 2023

ASX ANNOUNCEMENT

Encouraging Final Drill Results at Mulgine Hill

Highlights

- Exploration drilling program testing targets at Mt Mulgine successfully completed with a total of **50 holes for 6,187 metres drilled and all assays received.**
- Drilling has identified significant molybdenum mineralisation in Mulgine Hill North and Mulgine Hill East which represent a considerable target of high-grade molybdenum.
- Infill RC drilling at Mulgine Hill East defined significant molybdenum-tungsten mineralisation over 520 metres of strike. Better intersections included:
 - $\circ~$ 11 metres at 3300 ppm Mo from 56 metres and 5 metres at 3400 ppm Mo from 72 metres in MMC552
 - $_{\odot}$ 10 metres at 0.18% WO_3 from 33 metres in MMC542 and 7 metres at 0.22% WO_3 from 119 metres in MMC555
- First-pass drilling at Mulgine Hill North defined significant molybdenum-tungsten mineralisation over 320 metres of strike. Better intersections included:
 - 16 metres at 4600 ppm Mo from 20 metres in MMC569 and 21 metres at 1700 ppm Mo from 34 metres in MMC564.
 - $\circ~$ 10 metres at 0.14% WO_3 from 45 metres in MMC562 and 10 metres at 0.25% WO_3 from 118 metres in MMC563.
- Five RC holes drilled beneath Mulgine Hill intersected significant zones of high-grade tungsten-molybdenum mineralisation beneath the 2019 Mineral Resource estimate. Better intersections included:
 - \circ 14 metres at 0.12% WO_3 and 4400 ppm Mo from 57 metres in MMC583
 - o 20 metres at 1600 ppm Mo from 68 metres in MMC584

Background

Australian tungsten developer, Tungsten Mining NL (ASX: TGN) ("TGN" or "the Company") is pleased to report on the latest results from drilling at the Mt Mulgine Project. In the June Quarter, the Company completed 50 reverse circulation drill holes totalling 6,187 metres testing five targets around the Mulgine Hill deposit (Figure 1).

The objective of the drilling was to test potential high-grade tungsten-molybdenum mineralisation identified by historic drilling and a large coincident molybdenum-tungsten soil anomaly adjacent to the Mulgine Hill deposit. Drilling intersected significant tungsten-molybdenum mineralisation to the north, east and west of the Mulgine Hill deposit. Five holes were also drilled to investigate tungsten-molybdenum mineralisation beneath the Mulgine Hill deposit and these holes intersected zones of high-grade tungsten-molybdenum mineralisation. This announcement reports on assay results received by the Company from this drilling.

Tungsten Mining's chairman Gary Lyons commented, "We are pleased to have finalised and completed interpretation from the drill program testing targets adjacent to the Mulgine Hill deposit. These results have defined significant zones of molybdenum and tungsten mineralisation which may represent alternate development pathways. We are excited to explore these opportunities."

Level 4, 46 Colin Street, West Perth WA 6005 Australia PO Box 452, West Perth WA 6872 Australia T+61 8 9486 8492F+61 8 6117 4039

info@tungstenmining.com tungstenmining.com AN AUSTRALIAN BASED RESOURCES COMPANY

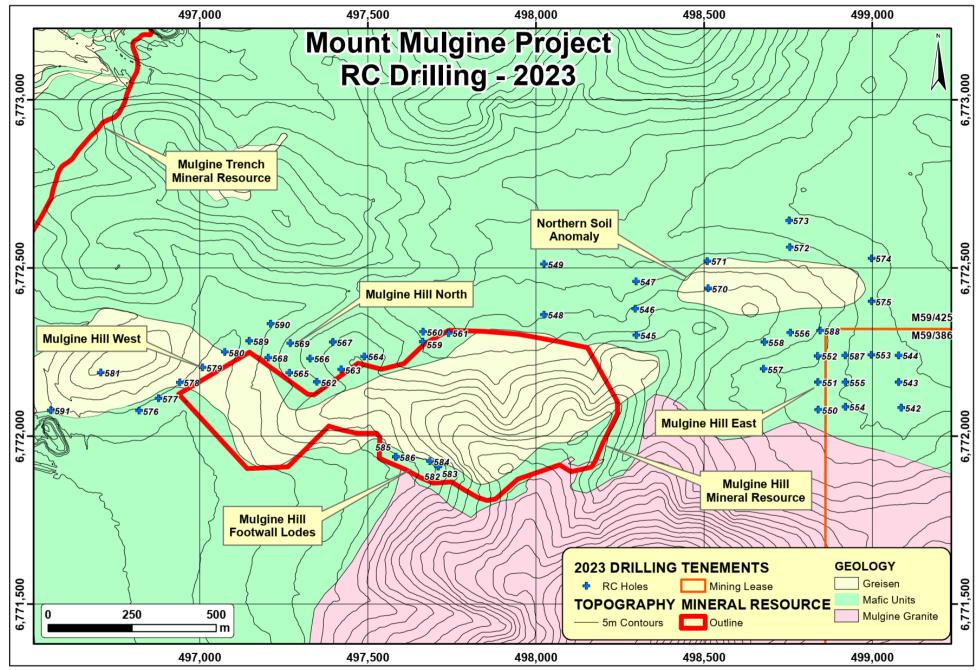


Figure 1. Plan showing the location of June quarter 2023 RC drilling (prefixed MMC).

Mulgine Hill East

In 2018, the Company conducted sterilisation drilling across a possible waste landform site at Mulgine Hill East and intersected significant zones of molybdenum-tungsten mineralisation over 620 metres of strike. Mineralisation was associated with strongly altered and quartz-veined mafic schists and greisen similar to that found at Mulgine Hill.

In the June 2023 quarter, the Company drilled 14 RC holes for 1834 metres to infill stronger zones of mineralisation to 80 metre by 40 metre drill spacing. Holes intersected molybdenum - tungsten mineralisation parallel to the Mulgine Granite contact over 520 metres of strike (Figure 2 and 3). Better intersections for molybdenum included **11 metres at 3300 ppm Mo from 56 metres** and **5 metres at 3400 ppm Mo from 72 metres** in MMC552. Tungsten mineralisation included zones up to **10 metres at 0.18% WO₃ from 33 metres in MMC542** and **7 metres at 0.22% WO₃ from 119 metres in MMC555**. Better intersections are listed in Tables 1 and 2 for molybdenum and tungsten respectively. For a complete list of intersections refer to Appendix 1 and 2.

	Mu	Ilgine Hill Eas	t Drilling - Si	ignificant Moly	bdenum M	ineralisatio	n (>500 ppm N	10)		
		MGA Coo	ordinates		Intersections					
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	Mo (ppm)	WO₃ (%)	
MMC550	6,772,078	498,840	100	-60/180	49	55	6	2400	0.02	
MMC551	6,772,160	498,839	110	-60/180	17	38	21	1900	0.09	
MMC552	6,772,238	498,838	150	-60/180	24	46	22	2500	0.06	
MMC552					56	67	11	3300	0.10	
				Incl.	60	62	2	14100	0.04	
MMC552					72	77	5	3400	0.01	
MMC558	6,772,279	498,680	180	-60/180	1	12	11	1300	0.02	
MMC558					30	33	3	5800	0.03	
MMC558					117	126	9	2700	0.01	
MMC587	6,772,239	498,921	150	-60/180	59	73	14	1700	0.14	
MMC588	6,772,313	498,846	180	-60/180	98	111	13	1000	0.02	

Table 1 – Better molybdenum intersections from Mulgine Hill East

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 500 ppm Mo, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 50.

Table 2 – Better tungsten intersections from Mulgine Hill East

		MGA Coo	ordinates		Intersections						
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO ₃ (%)	Mo (ppm)		
MMC542	6,772,084	499,087	60	-60/180	9	27	18	0.08	670		
MMC542					33	43	10	0.18	90		
MMC551	6,772,160	498,839	110	-60/180	22	34	12	0.13	1120		
MMC552	6,772,238	498,838	150	-60/180	21	36	15	0.09	2100		
MMC553	6,772,242	498,998	162	-60/180	66	84	18	0.11	130		
MMC555	6,772,160	498,921	126	-60/180	28	44	16	0.10	430		
MMC555					119	126	7	0.22	1050		
MMC587	6,772,239	498,921	150	-60/180	56	75	19	0.13	1290		

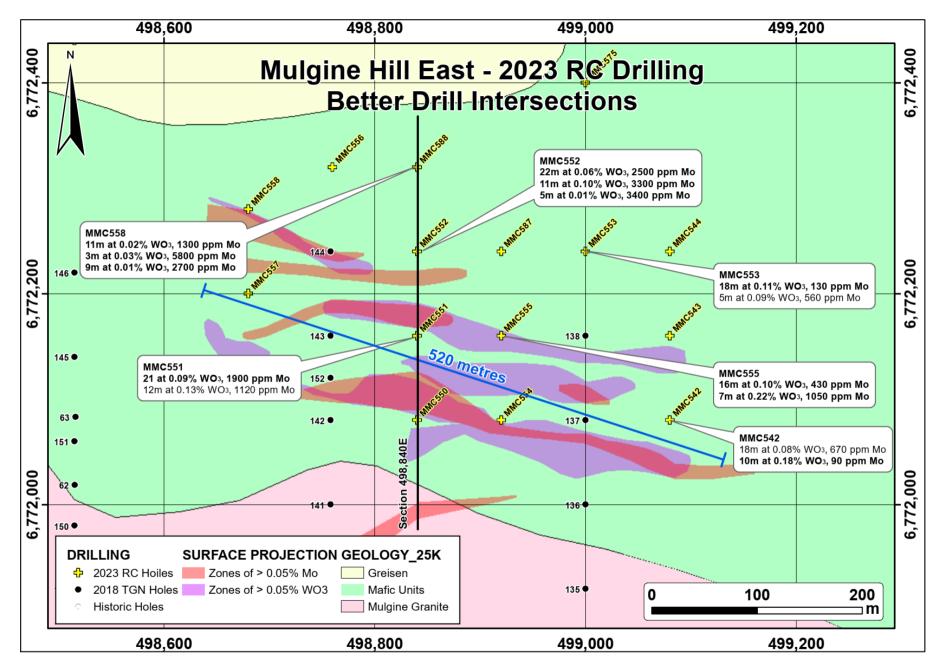


Figure 2. Plan showing surface projection of molybdenum and tungsten mineralisation relative to 2023 RC drilling at Mulgine Hill East.

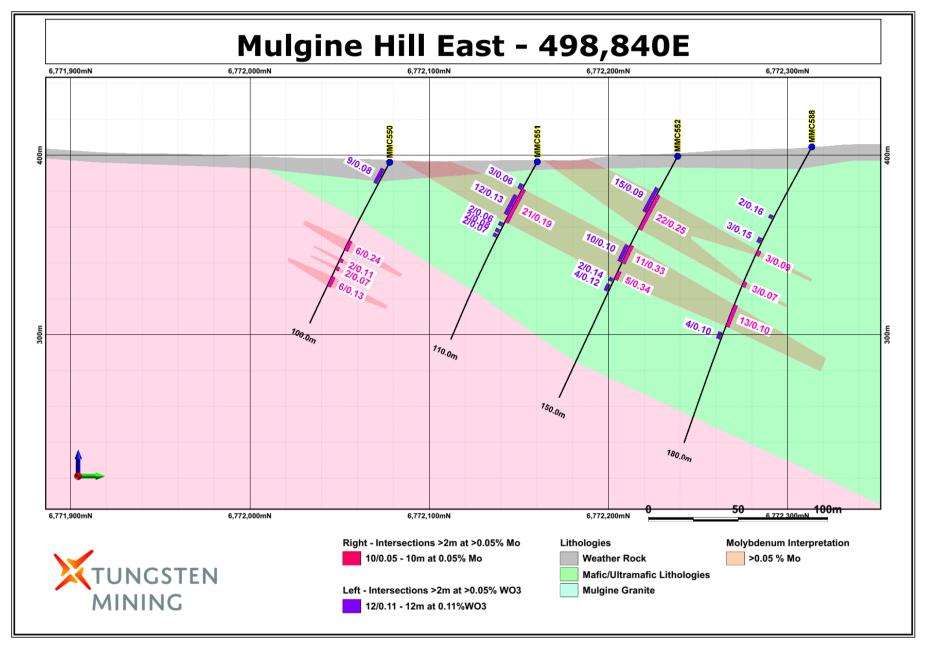


Figure 3. Section displaying shallow dipping zones of molybdenum mineralisation at Mulgine Hill East.

Mulgine Hill North

In the June 2023 quarter, the Company drilled 11 RC holes for 1530 metres to test extensions to high-grade tungsten mineralisation at Mulgine Hill and anomalous molybdenum intersected by shallow historical RAB drilling. Drilling intersected two styles of mineralisation as follows:

- Molybdenum (± tungsten) mineralisation hosted by quartz-veined mafics in the hangingwall to the Upper Greisen unit of Mulgine Hill.
- Tungsten mineralisation hosted by the Upper Greisen that are extensions to Mulgine Hill mineralisation and which form continuous zone to the north and west of Mulgine Hill.

Drilling identified broad zones of molybdenum mineralization over 300 metres of strike including **16 metres at 4600 ppm Mo from 20 metres in MMC569 and 21 metres at 1700 ppm Mo from 34 metres in MMC564** (Figures 4 and 5).

Strike extensions to Mulgine Hill tungsten mineralisation included zones up to **10 metres at 0.14% WO₃ from 45 metres in MMC562** and **10 metres at 0.25% WO₃ from 118 metres in MMC563**. Best intersections are listed in Tables 3 and 4 for molybdenum and tungsten respectively. For a complete list of intersections refer to Appendix 1 and 2.

	Mu	lgine Hill Nort	h Drilling - Si	ignificant Moly	ybdenum M	ineralisatio	n (> 500 ppm	Mo)		
		MGA Coo	ordinates		Intersections					
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	Mo (ppm)	WO₃ (%)	
MMC561	6,772,306	497,740	66	-60/180	5	20	15 *	1100	0.02	
MMC563	6,772,198	497,421	160	-90	15	40	25	1100	0.02	
MMC564	6,772,237	497,489	180	-90	34	55	21	1700	0.03	
MMC564				-90	63	71	8	1600	0.01	
MMC566	6,772,231	497,329	160	-90	35	40	5	2100	0.01	
					119	123	4	5000	0.08	
				Incl.	121	122	1	14400	0.02	
MMC567	6,772,280	497,396	150	-90	31	55	24	900	0.05	
MMC568	6,772,233	497,204	168	-90	66	69	3	5300	0.19	
				Incl.	67	68	1	10700	0.05	
MMC569	6,772,276	497,269	126	-90	20	36	16	4600	0.04	
MMC569				Incl.	26	29	3	18,400	0.04	

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 500 ppm Mo, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 50. * Denotes preliminary 5m composite sampling.

Table 4 – Better tungsten intersections from Mulgine Hill North

	N	/lulgine Hill N	orth Drilling -	Significant T	ungsten Mir	neralisation	(> 0.05% WO	3)		
		MGA Coo	ordinates		Intersections					
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ (%)	Mo (ppm)	
MMC559	6,772,280	497,664	130	-50/180	0	16	16	0.11	300	
MMC562	6,772,161	497,349	110	-90	45	55	10	0.14	120	
MMC562				-90	82	93	11	0.12	120	
MMC563	6,772,198	497,421	160	-90	118	128	10	0.25	810	
MMC566	6,772,231	497,329	160	-90	133	150	17	0.14	110	
MMC568	6,772,233	497,204	168	-90	63	75	12	0.14	1540	
	DO /									

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 0.05% WO₃, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 50.

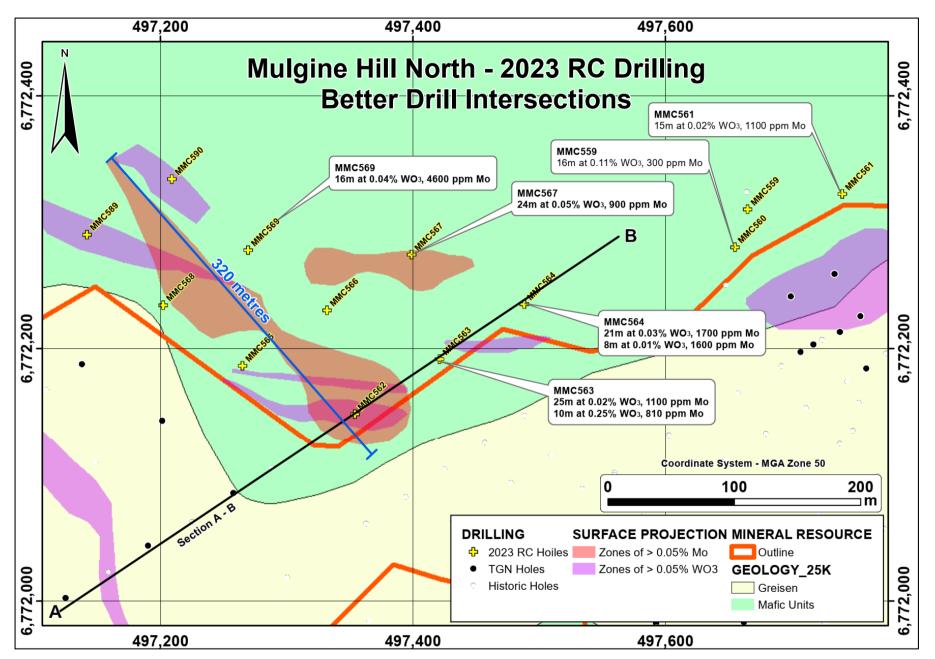


Figure 4. Plan showing surface projection of molybdenum and tungsten mineralisation relative to 2023 RC drilling at Mulgine Hill North.

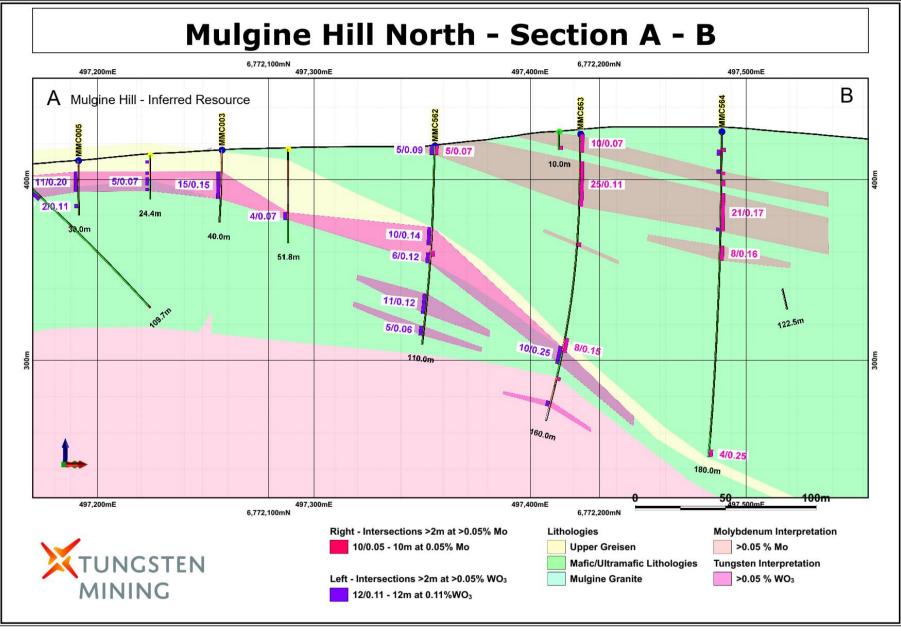


Figure 5. Cross section showing shallow dipping zones of molybdenum mineralisation hosted by mafic units and tungsten mineralisation associated with the Upper Greisen.

Mulgine Hill West

During the June 2023 quarter a total of 9 RC holes for 1230 metres were drilled at Mulgine Hill West to test strike extension of high-grade tungsten mineralisation at Mulgine Hill (Figure 6). Drilling intersected tungsten mineralisation associated with the prospective Upper Greisen including 7 metres at 0.23% WO₃ from 81 metres in MMC578 and 21 metres at 0.10% WO₃ from 49 metres in MMC579. Better intersections are listed in Tables 5 and for a complete list of intersections refer to Appendix 1 and 2.

		MGA Coo	ordinates		Intersections					
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip	From (m)	To (m)	Interval (m)	WO ₃ (%)	Mo (ppm)	
MMC577	6,772,112	496,877	120	-90	76	80	4	0.46	90	
				Incl.	76	77	1	1.42	130	
MMC578	6,772,160	496,941	160	-90	81	88	7	0.23	30	
				Incl.	81	82	1	1.04	40	
MMC579	6,772,204	497,008	144	-90	49	70	21	0.10	130	
MMC591	6,772,076	496,556	136	-90	113	115	2	0.74	40	
				Incl.	113	114	1	1.27	30	

Table 5 – Better tungsten intersections from Mulgine Hill West RC Drilling

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 0.05% WO₃, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 50.

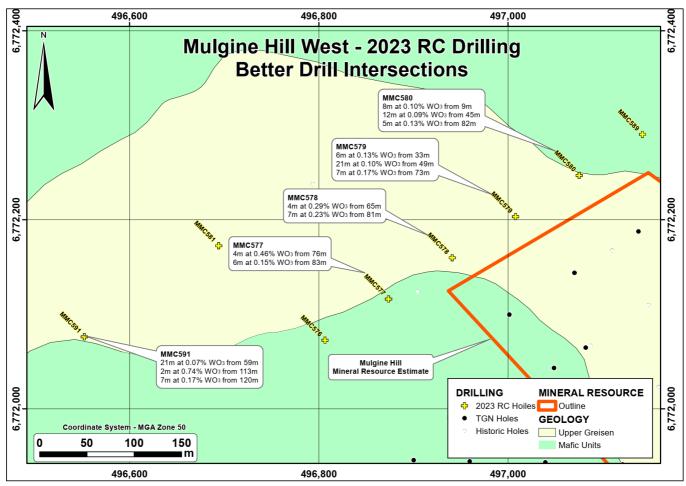


Figure 6. Better intersection from RC drilling at Mulgine Hill West.

Mulgine Hill Footwall

preliminary 5m composite sampling.

During the June 2023 quarter the Company drilled five holes for 476 metres beneath the Main Zone at Mulgine Hill to investigate high-grade tungsten-molybdenum mineralisation intersected by drilling into the Mulgine Granite (Figure 7). Drilling at Mulgine Hill typically extended 10 to 20 metres beneath the Main Zone resulting in the Mulgine Granite is not being adequately drill tested. This implies that there is considerable potential for high-grade tungsten-molybdenum mineralisation immediately beneath the Mulgine Hill Mineral Resource.

All five holes intersected significant zones of tungsten-molybdenum mineralisation beneath the 2019 Mineral Resource estimate. Better intersections included 14 metres at 0.12% WO₃ and 4400 ppm Mo from 57 metres in MMC583 and 20 metres at 0.07% WO₃ and 1600 ppm Mo from 68 metres in MMC584 (Figure 8). Best intersections are listed in Tables 6 and 7 for molybdenum and tungsten respectively. For a complete list of intersections refer to Appendix 1 and 2.

		ory saoria				9		•		
	Mul	gine Hill Foot	wall Drilling	- Significant M	lolybdenum	Mineralisa	ntion (> 0.05% l	No)		
		MGA Coo	ordinates		Intersections					
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	Mo (ppm)	WO ₃ (%)	
MMC583	6,771,909	497,709	81	-90	57	71	14	4400	0.12	
				Incl.	66	67	1	10000	0.24	
MMC584	6,771,925	497,685	91	-90	68	88	20	1600	0.07	
MMC586	6,771,938	497,583	114	-60/056	95	105	10	2700	0.03	
•	RC samples we					0				

Table 6 – Better molybdenum intersections from Mulgine Hill Footwall

Table 7 – Better tungsten intersections from Mulgine Hill Footwall

	Mu	ulgine Hill Foo	twall Drilling	J - Significant	Tungsten M	ineralisatio	on (> 0.05% WO) ₃)			
		MGA Coo	rdinates		Intersections						
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)		
MMC582	6,771,911	497,710	90	-60/050	62	66	4	0.47	1140		
				Incl.	63	64	1	1.46	1020		
MMC582					73	89	16	0.13	400		
MMC583	6,771,909	497,709	81	-90	61	70	9	0.17	5020		
MMC584	6,771,925	497,685	91	-90	24	35	11	0.13	80		
MMC585	6,771,938	497,584	100	-85/072	81	87	6	0.25	690		
				Incl.	82	83	1	1.06	330		

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO_3 by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 0.05% WO₃, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 50.

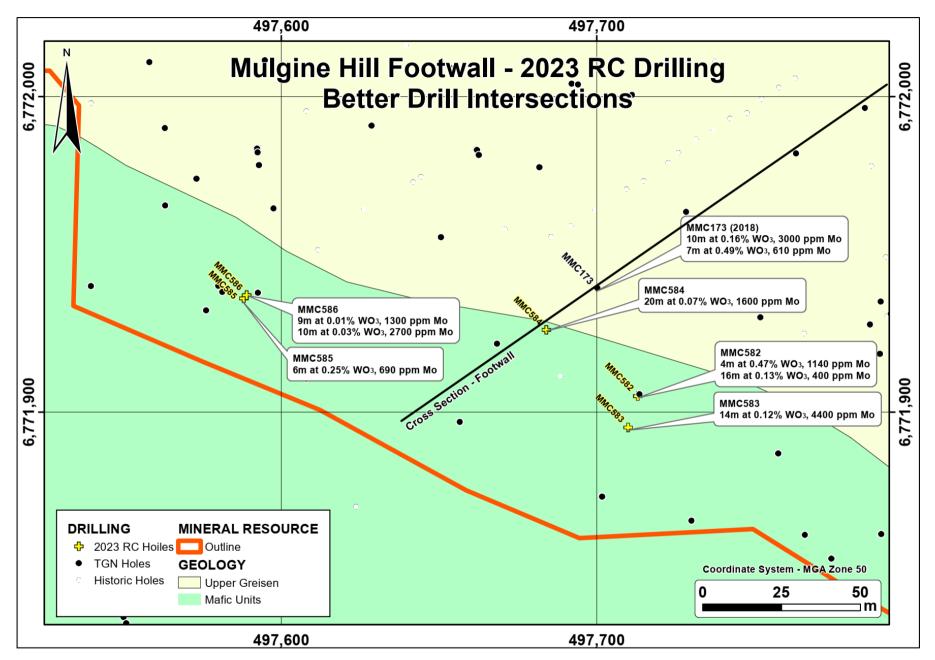


Figure 7. Plan showing drill intersections from the Mulgine Granite beneath the 2019 Mineral Resource estimate for Mulgine Hill.

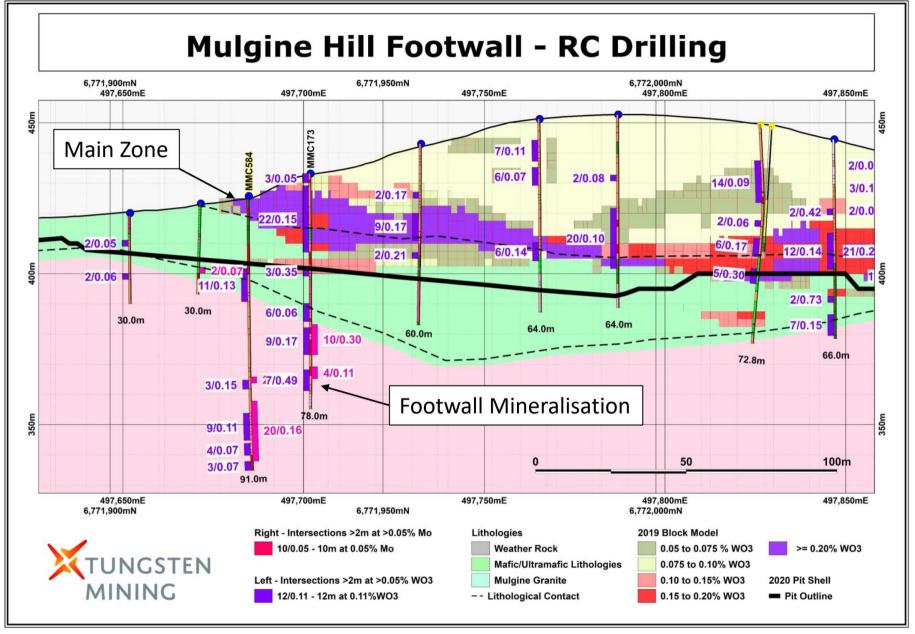


Figure 8. Cross section displaying the 2019 block model the Mulgine Hill Mineral Resource estimate and tungsten-molybdenum mineralisation intersected by drilling in the Mulgine Granite.

Northern Soil Anomaly

During the June 2023 quarter the Company drilled 11 scout RC holes for 1117 metres to evaluate a large (1.6 km by 0.5 km) coincident molybdenum-tungsten soil anomaly northeast of the Mulgine Hill deposit (Figure 9). Drilling intersected fine to medium grained mafic/ultramafic units intruded by granitic dykes. Drilling was broad spaced with two holes intersecting significant molybdenum and/or tungsten mineralisation. The hole MMC549 intersected a 25 metre wide zone of anomalous molybdenum associated with quartz veined mafics adjacent to a granitic dyke. Preliminary 5m composite samples returned 10 metres at 500 ppm Mo from 25 metres and 5 metres at 2800 ppm Mo from 40 metres. The second hole MMC545, intersected tungsten and molybdenum mineralisation 175 metres north of Mulgine Hill. This mineralisation is associated with the Mulgine Granite contact indicating potential to extend mineralisation further north of the current drilling at Mulgine Hill.

Best intersections are listed in Tables 8 and 9 for molybdenum and tungsten respectively. For a complete list of intersections refer to Appendix 1 and 2.

Table 0 -	- Detter III	orybuent			on the	Northe		lomaly		
	Mul	gine Hill Foot	wall Drilling	Significant M	lolybdenum	Mineralisa	tion (> 0.05%	Mo)		
		MGA Coo	ordinates		Intersections					
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	Mo (ppm)	WO ₃ (%)	
MMC545	6,772,300	498,299	100	-60/180	26	32	6	1000	0.05	
MMC548	6,772,361	498,024	100	-60/180	80	85 *	5	1500	0.01	
MMC549	6,772,512	498,024	100	-60/180	25	35*	10	500	0.00	
MMC549					40	45 *	5	2800	0.01	
MMC570	6,772,439	498,512	100	-60/180	0	10*	10	1300	0.10	
,						0		(RF and Mo by I	-	

Table 8 – Better molybdenum intersections from the Northern Soil Anomaly

1m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 500 ppm Mo, no top cut grade and up to 2m of internal waste. Grid coordinates are MGA Zone 50. * Denotes preliminary 5m composite sampling.

Table 9 – Better tungsten intersections from the Northern Soil Anomaly

	Mulgine Hill Footwall Drilling - Significant Tungsten Mineralisation (> 0.05% WO ₃)											
		MGA Coo	ordinates		Intersections							
Hole No	Northing	orthing Easting		Dip/	From	То	Interval	WO ₃	Мо			
	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)			
MMC545	6,772,300	498,299	100	-60/180	7	13	6	0.11	190			
MMC545	6,772,300	498,299	100	-60/180	44	51	7	0.11	40			
MMC570	6,772,439	498,512	100	-60/180	0	5 *	5	0.18	1980			
MMC572	6,772,561	498,755	90	-60/180	0	5*	5	0.12	250			

1*m* cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade of 0.05% WO₃, no top cut grade and up to 2*m* of internal waste. Grid coordinates are MGA Zone 50. *Denotes preliminary 5*m* composite sampling.

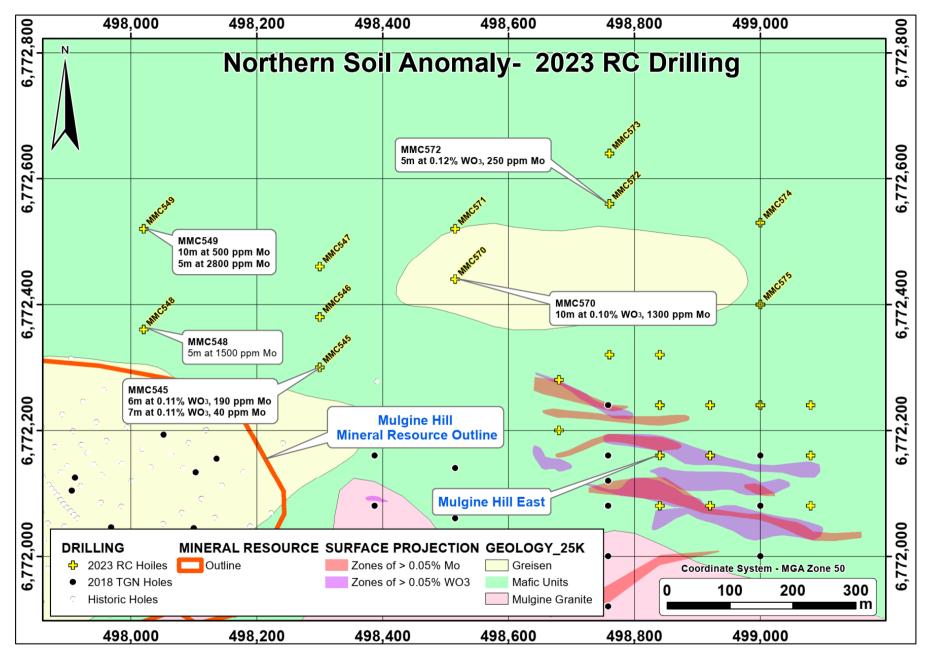


Figure 9. Plan showing the location of drill intersections testing the soil anomaly northeast of the Mulgine Hill deposit.

-ENDS-

For further information: Teck Wong Chief Executive Officer Ph: +61 8 9486 8492 E: teck@tungstenmining.com

Sonu Cheema Company Secretary Ph: +61 8 9316 9100 E: sonu@tungstenmining.com

This ASX announcement was authorised for release by the board of Tungsten Mining NL.

Competent Person's Statement

The information in this report that relates to Exploration Results and Data Quality is based on, and fairly represents, information and supporting documentation prepared by Peter Bleakley, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Bleakley is not a full-time employee of the company. Mr Bleakley is a consultant to the mining industry. Mr Bleakley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bleakley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

About Tungsten Mining

Australian tungsten developer, Tungsten Mining NL is an Australian based resources company listed on the Australian Securities Exchange. The Company's prime focus is the exploration and development of tungsten projects in Australia.

Tungsten (chemical symbol W), occurs naturally on Earth, not in its pure form but as a constituent of other minerals, only two of which support commercial extraction and processing - wolframite ((Fe, Mn) WO_4) and scheelite (CaWO₄).

Tungsten has the highest melting point of all elements except carbon – around 3400°C giving it excellent high temperature mechanical properties and the lowest expansion coefficient of all metals. Tungsten is a metal of considerable strategic importance, essential to modern industrial development (across aerospace and defence, electronics, automotive, extractive and construction sectors) with uses in cemented carbides, high-speed steels and super alloys, tungsten mill products and chemicals.

Through exploration and acquisition, the Company has established a globally significant tungsten resource inventory in its portfolio of advanced mineral projects across Australia. This provides the platform for the Company to become a major player within the global primary tungsten market through the development of low-cost tungsten concentrate production.

Appendix 1 Intersections greater than 3 metres at 0.05% WO₃

	Mt M	ulgine 2023 [Drilling - S	ignificant 1	Fungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut o	off)	
		MGA Coord	inates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
1110510	0.770.004	400.007			Ilgine Hill Ea		07	10		070
MMC542	6,772,084	499,087	391	60	-63/180	9	27	18	0.08	670
MMC542						33	43	10	0.18	90
MMC543	6,772,161	499,079	390	108	-66/180	8	13	5	0.11	40
MMC543						45	50	5	0.08	130
MMC543						65	71	6	0.07	70
MMC544	6,772,240	499,079	389	96	-61/180	45	50	5	0.06	230
MMC544						59	63	4	0.09	150
MMC544						85	94	9	0.10	340
MMC550	6,772,078	498,840	396	100	-62/180	5	14	9	0.08	90
MMC551	6,772,160	498,839	396	110	-61/180	15	18	3	0.06	490
MMC551						22	34	12	0.13	1120
MMC552	6,772,238	498,838	399	150	-61/180	21	36	15	0.09	2100
MMC552						57	67	10	0.10	3520
MMC552						81	85	4	0.12	70
MMC553	6,772,242	498,998	392	162	-61/182	54	59	5	0.09	560
MMC553						66	84	18	0.11	130
MMC553						92	96	4	0.09	40
MMC554	6,772,087	498,921	395	102	-60/182	5	15	10	0.11	170
MMC554						64	67	3	0.06	720
MMC554						69	71	2	0.31	180
MMC555	6,772,160	498,921	394	126	-62/183	0	5	5	0.08	20
MMC555						15	20	5	0.12	180
MMC555						28	44	16	0.10	430
MMC555						53	57	4	0.13	50
MMC555						119	126	7	0.22	1050
MMC556	6,772,308	498,757	407	180	-61/185	55	60	5	0.05	510
MMC557	6,772,200	498,678	402	130	-61/183	13	15	2	0.62	70
MMC557						13	14	1	1.13	90
MMC557						18	22	4	0.06	360
MMC557						25	30	5	0.14	210
MMC557						78	82	4	0.07	120
MMC557						85	88	3	0.09	60
MMC558	6,772,279	498,680	408	180	-60/184		No Signific	ant Tungste	n Intersectio	ns
MMC587	6,772,239	498,921	396	150	-60/180	15	20	5	0.06	190
MMC587						45	54	9	0.06	360
MMC587						56	75	19	0.13	1290
MMC587				+		90	95	5	0.06	100
MMC588	6,772,313	498,846	405	180	-61/180	44	46	2	0.16	190
MMC588		, -	-			58	61	3	0.15	430
								Ĵ	0.10	

	Mt M	ulgine 2023 E	Drilling - S	ignificant	Fungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut c	off)	
		MGA Coordi	inates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC588						115	119	4	0.10	130
				Mu	lgine Hill No					
MMC559	6,772,280	497,664	415	130	-51/182	0	16	16	0.11	300
MMC559						27	29	2	0.44	340
MMC560	6,772,310	497,664	413	120	-60/180	15	31	16	0.08	320
MMC560						43	49	6	0.09	220
MMC560						65	70	5	0.19	50
MMC560						80	83	3	0.07	260
MMC560						105	110	5	0.07	400
MMC561	6,772,306	497,740	409	66	-60/180	25	34	9	0.11	340
MMC561						47	62	15	0.09	320
MMC562	6,772,161	497,349	419	110	-88/259	0	5	5	0.09	700
MMC562	-,,	,				45	55	10	0.14	120
MMC562						59	65	6	0.12	520
MMC562						82	93	11	0.12	120
MMC562						100	105	5	0.06	240
MMC563	6,772,198	497,421	425	160	-89/279	118	105 128	10	0.00	810
	0,772,190	497,421	420	160	-09/219					
MMC563		107 100	100	100	00/100	149	152	3	0.08	50
MMC564	6,772,237	497,489	426	180	-90/180	10	13	3	0.18	500
MMC565	6,772,188	497,267	415	160	-89/180	3	6	3	0.07	200
MMC565						33	36	3	0.11	200
MMC565						41	50	9	0.10	70
MMC565						57	60	3	0.32	130
MMC565						140	148	8	0.07	50
MMC566	6,772,231	497,329	421	160	-90/132	42	43	1	1.13	20
MMC566						59	61	2	0.23	30
MMC566						108	116	8	0.09	130
MMC566						133	150	17	0.14	100
MMC567	6,772,280	497,396	423	150	-89/237	32	36	4	0.15	1170
MMC567						85	88	3	0.10	40
MMC568	6,772,233	497,204	411	168	-89/357	63	75	12	0.14	1540
MMC568				1		139	142	3	0.07	50
MMC568						151	154	3	0.07	710
MMC569	6,772,276	497,269	416	126	-90/178	21	25	4	0.11	1560
MMC569	,, , _ _, _	,				105	108	3	0.10	280
MMC569						120	122	2	0.13	320
14114100000				N/	Igine Hill W		122	2	0.10	520
MMC576	6 772 075	496,819	405	120	-89/263	est 78	83	5	0.09	30
	6,772,075									
MMC577	6,772,112	496,877	406	120	-89/170	9	16	7	0.07	90
MMC577				ļ		76	80	4	0.46	90
MMC577					Incl.	76	77	1	1.42	130
MMC577						83	89	6	0.15	70
MMC577						97	110	13	0.09	140

	Mt M	ulgine 2023 [Drilling - S	ignificant [·]	Tungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut c	off)	
		MGA Coord	inates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC578	6,772,160	496,941	407	160	-89/211	5	16	11	0.07	170
MMC578						21	32	11	0.10	140
MMC578						65	69	4	0.29	230
MMC578						81	88	7	0.23	40
MMC578					Incl.	81	82	1	1.04	40
MMC579	6,772,204	497,008	405	144	-89/129	33	39	6	0.13	180
MMC579						49	70	21	0.10	130
MMC579						73	80	7	0.17	70
MMC580	6,772,250	497,074	405	120	-88/190	9	17	8	0.10	70
MMC580						45	57	12	0.09	70
MMC580						82	87	5	0.13	50
MMC581	6,772,189	496,705	422	120	-89/212	30	33	3	0.07	80
MMC581						91	95	4	0.10	370
MMC581						109	112	3	0.15	40
MMC589	6,772,283	497,147	408	150	-88/102	0	5	5	0.11	20
MMC589						38	43	5	0.14	550
MMC589						79	85	6	0.11	740
MMC589						89	92	3	0.06	30
MMC590	6,772,334	497,210	410	160	-89/234	0	5	5	0.13	200
MMC590	0,112,001	107,210	110	100	00/201	63	68	5	0.08	200
MMC590						74	78	4	0.00	170
MMC590						112	119	7	0.09	250
MMC590						131	138	7	0.09	60
	0.770.070	400 550	405	400	07/400					
MMC591	6,772,076	496,556	405	136	-87/120	25	30	5	0.07	130
MMC591						59	67	8	0.08	370
MMC591						70	80	10	0.08	240
MMC591						99	103	4	0.19	50
MMC591						113	115	2	0.74	40
MMC591					Incl.	113	114	1	1.28	30
MMC591						120	127	7	0.17	30
	1			-	jine Hill Foo		1	T	I	I
MMC582	6,771,911	497,710	429	90	-61/050	25	31	6	0.15	160
MMC582						35	41	6	0.09	140
MMC582						62	66	4	0.47	1130
MMC582					Incl.	63	64	1	1.46	1020
MMC582						73	89	16	0.13	400
MMC583	6,771,909	497,709	429	81	-89/221	11	16	5	0.24	740
MMC583				1		27	31	4	0.09	110
MMC583						35	38	3	0.09	70
MMC583						61	70	9	0.17	5020
MMC583				1		74	81	7	0.11	220
MMC584	6,771,925	497,685	426	91	-88/130	24	35	11	0.13	80
MMC584				1		61	64	3	0.15	540

	MGA Coordinates				Intersections						
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)	
MMC584						72	81	9	0.11	2400	
MMC584						82	86	4	0.07	1020	
MMC584						88	91	3	0.07	480	
MMC585	6,771,938	497,584	420	100	-85/072	0	3	3	0.11	190	
MMC585						45	47	2	0.22	160	
MMC585						81	87	6	0.25	680	
MMC585					Incl.	82	83	1	1.06	330	
MMC586	6,771,938	497,583	420	114	-61/056	41	44	3	0.21	20	
MMC586						90	93	3	0.26	1080	
				North	ern Soil And	omaly					
MMC545	6,772,300	498,299	416	100	-61/180	7	13	6	0.11	190	
MMC545						44	51	7	0.11	40	
MMC546	6,772,379	498,296	409	130	-60/177		No Signific	ant Tungste	n Intersectio	ns	
MMC547	6,772,460	498,298	402	100	-61/179		No Signific	ant Tungste	n Intersectio	ns	
MMC548	6,772,361	498,024	409	100	-63/180		No Signific	ant Tungste	n Intersectio	ns	
MMC549	6,772,512	498,024	402	100	-61/179		No Signific	ant Tungste	n Intersectio	ns	
MMC570	6,772,439	498,512	409	100	-61/177	0	5	5	0.18	1980	
MMC571	6,772,520	498,510	403	102	-61/176	5	10	5	0.07	160	
MMC572	6,772,561	498,755	397	90	-50/180	0	5	5	0.12	250	
MMC573	6,772,641	498,754	394	99	-60/183		No Signific	ant Tungste	n Intersectio	ns	
MMC574	6,772,529	498,999	394	100	-61/179		No Signific	ant Tungste	n Intersectio	ns	
MMC575	6,772,401	498,999	392	96	-56/182		No Signific	ant Tungste	n Intersectio	ns	

Appendix 2 Intersections greater than 3 metres at 500 ppm Mo

	Mt Mulgir	ne 2023 Drillin	ig - Signifi	cant Molybo	denum Minera	lisation (>	3m at 50	0 ppm Mo cu	t off)	
		MGA Coord	linates				Inter	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	Mo (ppm)	WO₃ (%)
	()	()	()		ne Hill East	()	()	()	ur /	
MMC542	6,772,084	499,087	391	60	-63/180	13	25	12	930	0.06
MMC543	6,772,161	499,079	390	108	-66/180	50	55	5	850	0.04
MMC544	6,772,240	499,079	389	96	-61/180	90	94	4	560	0.11
MMC550	6,772,078	498,840	396	100	-62/180	49	55	6	2440	0.02
MMC550						60	62	2	1140	0.01
MMC550						71	77	6	1300	0.02
MMC551	6,772,160	498,839	396	110	-61/90	17	38	21	1850	0.09
MMC552	6,772,238	498,838	399	150	-61/180	24	46	22	2460	0.06
MMC552						56	67	11	3310	0.10
MMC552					Incl.	60	62	2	14100	0.36
MMC552						72	77	5	3350	0.01
MMC553	6,772,242	498,998	392	162	-61/182	54	56	2	1130	0.11
MMC553						142	144	2	1100	0.02
MMC554	6,772,087	498,921	395	102	-60/182	62	67	5	930	0.05
MMC555	6,772,160	498,921	394	126	-62/183	41	45	4	1020	0.09
MMC555						124	126	2	2850	0.58
MMC556	6,772,308	498,757	407	180	-61/185	5	10	5	720	0.04
MMC556						32	35	3	1220	0.02
MMC556						54	60	6	740	0.05
MMC556						98	100	2	1000	0.04
MMC558	6,772,279	498,680	408	180	-60/184	1	12	11	1310	0.02
MMC558						30	33	3	5790	0.03
MMC558						117	126	9	2740	0.01
MMC558						142	146	4	700	0.02
MMC587	6,772,239	498,921	396	150	-60/180	59	73	14	1660	0.14
MMC587						75	79	4	1040	0.02
MMC587						128	140	12	810	0.02
MMC588	6,772,313	498,846	405	180	-61/180	65	68	3	910	0.04
MMC588						84	87	3	740	0.04
MMC588						98	111	13	980	0.02
				Mulgin	e Hill North	<u>.</u>		-		-
MMC559	6,772,280	497,664	415	130	-51/182	51	59	8	1400	0.03
MMC559						78	80	2	1820	0.01
MMC560	6,772,310	497,664	413	120	-60/180	70	76	6	600	0.04
MMC560						95	98	3	880	0.04
MMC561	6,772,306	497,740	409	66	-60/180	5	20	15	1050	0.02
MMC562	6,772,161	497,349	419	110	-88/259	0	5	5	700	0.09
MMC562						58	61	3	810	0.05
MMC563	6,772,198	497,421	425	160	-89/279	0	10	10	670	0.03

	Mt Mulgir	ne 2023 Drillin	g - Signifi	cant Molybo	lenum Minera	alisation (>	>3m at 500) ppm Mo cu	t off)	
		MGA Coord	linates				Inter	sections		
Hole No	Northing	Easting	RL (m)	Depth	Dip/	From	To	Interval	Mo	WO₃
MMC563	(m) 6,772,198	(m) 497,421	(m) 425	(m) 160	Azim -89/279	(m) 15	(m) 40	(m) 25	(ppm) 1120	(%) 0.02
MMC563	0,112,100	107,121	120	100	00,210	113	121	8	1540	0.05
MMC563						135	137	2	1360	0.03
MMC564	6,772,237	497,489	426	180	-90/180	27	30	3	740	0.00
MMC564						34	55	21	1710	0.03
MMC564						63	71	8	1580	0.01
MMC564						176	180	4	2520	0.12
MMC565	6,772,188	497,267	415	160	-89/180	68	73	5	1240	0.01
MMC565					-	107	109	2	1110	0.08
MMC566	6,772,231	497,329	421	160	-90/132	17	20	3	700	0.01
MMC566						35	40	5	2100	0.01
MMC566						45	49	4	1400	0.05
MMC566						72	75	3	1430	0.00
MMC566						104	107	3	2310	0.01
MMC566						119	123	4	4960	0.08
MMC566						121	122	1	14400	0.02
MMC567	6,772,280	497,396	423	150	-89/237	0	10	10	650	0.01
MMC567						31	55	24	870	0.05
MMC567						60	66	6	610	0.04
MMC567						70	77	7	1460	0.03
MMC567						81	84	3	530	0.01
MMC568	6,772,233	497,204	411	168	-89/357	66	69	3	5320	0.19
MMC568					Incl.	67	68	1	10700	0.05
MMC568						152	160	8	1010	0.03
MMC569	6,772,276	497,269	416	126	-90/178	20	36	16	4630	0.04
MMC569					Incl.	26	29	3	18,400	0.04
MMC569						40	45	5	520	0.01
MMC569						66	68	2	1170	0.03
MMC569						101	104	3	770	0.01
MMC578	6,772,160	496,941	407	Mulgin 160	e Hill West -89/211	1/5	147	2	1470	0.03
MMC578 MMC580	6,772,160	496,941	407	160	-89/211 -88/190	145 43	45	2	1470	0.03
MMC580 MMC589	6,772,250	497,074	405	120	-88/190	43 79	45 81	2	1130	0.01
MMC589 MMC590	6,772,334	497,147	408	160	-89/234	21	29	8	1910 1340	0.07
MMC590	6,772,076	497,210	405	136	-87/120	56	23 60	4	780	0.01
	0,112,010	100,000	100		Hill Footwa			т	100	0.04
MMC582	6,771,911	497,710	429	90	-61/50	62	65	3	1420	0.60
MMC582	-, .,	- /				79	81	2	1250	0.25
MMC583	6,771,909	497,709	429	81	-89/221	57	71	14	4420	0.12
MMC583	. ,	,	-		Incl.	66	67	1	10000	0.24
MMC584	6,771,925	497,685	426	91	-88/130	60	62	2	2710	0.07
MMC584						68	88	20	1590	0.07
MMC585	6,771,938	497,584	420	100	-85/72	71	73	2	2210	0.04

	MGA Coordinates			Intersections						
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	Mo (ppm)	WO₃ (%)
MMC585						84	95	11	760	0.03
MMC586	6,771,938	497,583	420	114	-61/56	10	12	2	1160	0.03
MMC586	6,771,938	497,583	420	114	-61/56	61	70	9	1320	0.01
MMC586						79	81	2	1150	0.00
MMC586						88	91	3	2890	0.04
MMC586						95	105	10	2680	0.03
				Northern	Soil Anoma	ly				
MMC545	6,772,300	498,299	416	100	-61/180	26	32	6	1000	0.05
MMC546	6,772,379	498,296	409	130	-60/177	40	45	5	640	0.01
MMC548	6,772,361	498,024	409	100	-63/180	65	70	5	510	0.01
MMC548						80	85	5	1470	0.01
MMC549	6,772,512	498,024	402	100	-61/179	25	35	10	530	0.00
MMC549						40	45	5	2770	0.01
MMC570	6,772,439	498,512	409	100	-61/177	0	10	10	1310	0.10

1m cone split RC samples submitted to Bureau Veritas Minerals Pty Ltd, Canning Vale WA for WO₃ by XRF and Mo by Laser Ablation ICP-MS. Lower cut-off grade 500 ppm Mo with up to 2m of interval waste, no top cut grade. Grid coordinates are MGA Zone 50.

Appendix 3 - JORC Code Reporting Criteria

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	Mulgine Trench and Mulgine Hill are sampled using Reverse Circulation (RC) and Diamond Drilling (DD) over multiple drilling campaigns. The latest drilling campaign was completed by Tungsten Mining utilising RC drilling.
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	A total of 50 Tungsten Mining RC (6187m) drillholes were drilled in the latest campaign and the majority of the holes were drilled at approximately 60 [°] - 90 [°] . perpendicular to stratigraphy and mineralisation.
		TGN drillhole collar locations were picked up by TGN personnel using a Hemisphere R120 DGPS receiver with sub- metre accuracy.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Downhole surveying was measured by the drill contractors using a Champ North Seeking solid state gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.
	measurement tools or systems used	Certified standards were inserted into the sample sequences in according to TGN QAQC procedures. Duplicate samples were collected to check repeatability of sampling and variability or nugget effect for mineralisation. Results from this QAQC sampling were considered good.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively	The RC drilling crew collected 1 metre intervals from the cyclone and the sample was split using a cone splitter to produce two representative 2 – 4 kilogram samples in calico bags. The cone splitter was cleaned by hosing with pressurised air to eliminate sample contamination. One of the calico samples is for analysis and the second duplicate sample is retained as a reference sample for possible reanalysing / QAQC activities.
	simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed	The bulk reject material was collected at 1 m intervals from the cyclone and placed on the ground for geological logging. The cone splitter was cleaned by hosing with pressurised air to eliminate sample contamination. Two samples were collected; one is used for analysis and the other is retained as a reference or for possible re-analysing / QAQC activities.
	information	Samples from the current drilling programme were submittee to Bureau Veritas Minerals Pty Ltd of Canningvale, WA, for a standard XRF Tungsten Suite and 40 gram fire assay for gold analysis. A second suite of elements including silver and molybdenum were analysed by Laser Ablation ICP-MS.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube,	TGN completed 50 RC drillholes with depths ranging from 60 to 180 m, averaging 123 m. RC drilling used a face-sampling hammer that produced a nominal 140 mm diameter hole.
	depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	TGN RC holes were surveyed in-rods at 30 m intervals using a Champ North Seeking gyroscopic probe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC and diamond recovery was visually assessed, recorded on drill logs and considered to be acceptable.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	RC samples collected by TGN were visually checked for recovery, moisture and contamination. A cyclone and cone splitter was used to provide a uniform sample and these were routinely cleaned. The drill contractor blew out the hole at th beginning of each drill rod to remove excess water and maintain dry samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Ground conditions for RC drilling were good and drilling returned consistent size samples. 96% of RC samples were dry and contamination would be minimal. Wet samples are noted down on sample sheets. No significant bias is expected and any potential bias is not considered material at this stage

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining	TGN uses specially designed drill logs for tungsten and molybdenum mineralisation to capture the geological data. During logging, part of the RC sample is washed, logged and placed into chip trays. The washed chip trays are stored in sea containers on site.
	studies and metallurgical studies.	All drill data is digitally captured and stored in a central database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC chip logging included records of lithology, mineralogy, textures, oxidation state and colour. Key minerals associated with tungsten mineralisation and veining are recorded.
	The total length and percentage of the relevant intersections logged	All TGN drill holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No drill core collected during the current drill program.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	TGN RC samples were collected on the rig by a cyclone. Material was split by a cone splitter immediately beneath the cyclone to produce two 3 - 5 kg samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples from the current drilling programme were submitted to Bureau Veritas Minerals Pty Ltd of Canning Vale, WA and dried, split if over 2.5 kg and pulverised in robotic vibrating disc pulveriser.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	TGN's QAQC procedures included the insertion of field duplicates and commercial standards. Duplicates and standards were inserted at intervals of one in 25. Geological logging and UV lamping was used to ensure duplicate samples were from mineralised intervals.
		TGN inserted 1 in 25 RC field duplicates taken from 1 m cone split samples at the rig. Repeatability in RC duplicate samples was found to be excellent for tungsten and molybdenum.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling.	TGN have drilled PQ diamond holes and RC hole have twined other RC and diamond drilling at Mulgine Trench and MulgineHill. These holes intersected similar grade and thickness of WO ₃ , Mo, Au and Ag mineralisation at target depths. Individual high grade zones did demonstrate the particulate or nuggetty nature of mineralisation present.
		Assays from duplicate samples repeated well with no systematic bias for tungsten and molybdenum.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The larger sample size of approximately 40 kg per metre collected by RC drilling is considered more appropriate than small diameter diamond holes and therefore sample sizes are considered to be acceptable to accurately represent the tungsten, molybdenum, silver and gold mineralisation present at Mt Mulgine.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests		Tungsten Mining assays samples for a tungsten suite by XRF. XRF has proven to be a very accurate analytical technique for a wide range of base metals, trace elements and major constituents found in rocks and mineral materials. Glass fusion XRF is utilised for assaying, since it provides good accuracy and precision; it is suitable for analysis from very low levels up to very high levels.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	Gold was assayed by 40g charge lead collection fire assay with silver used as secondary collector. Fire assay is regarded as the preferred method for quantitative gold analysis.
	technique is considered partial or total.	Molybdenum and silver plus 6 additional elements were assayed by Fused Bead Laser Ablation ICP-MS. The XRF disk is laser ablated and the gas formed is introduced to the Mass Spectrometer, providing an ideal platform for analysis. The Fused Bead Laser Ablation ICP-MS technique is total digestion of the sample achieved through the fusion process, so quantifiable elemental data is produced at detection limits that are equal if not better than acid digest techniques.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld magnetic susceptibility meter (KT-10) was used to measure magnetic susceptibility for every sample. Data is stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Field QAQC procedures for TGN sampling included the insertion of commercial standards and duplicates at the rate of one in 25 samples. Assay results have demonstrated acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have verified intersections in drilling. TGN personnel have conducted a review of all assaying by visual inspection of standards, duplicates, UV and molybdenum estimates for RC drilling against the drill database.
	The use of twinned holes.	TGN drilled PQ diamond holes and RC holes that twinned existing RC and diamond drilling at Mulgine Trench and Mulgine Hill. Twin holes intersected similar widths and grades for mineralisation. Individual high grade intervals were however found to be variable or nuggety.
		Logging conducted by TGN takes place at the drilling site. Ruggedised computers are used to record the logging for RC samples.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	A set of standard Excel templates are used to capture the data. Data was validated on-site by the supervising geologist before being sent to Perth office. It was then loaded into Micromine and validated for logging codes, missing intervals, overlapping intervals, hole location and downhole surveying. Validated data is then loaded into a relational database for storage.
	Discuss any adjustment to assay data.	No adjustments were made, other than for values below the assay detection limit which have been entered as half of the detection limit.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine	TGN drillhole collar locations were picked up by TGN personnel using a Hemisphere R120 DGPS receiver with submetre accuracy.
	workings and other locations used in Mineral Resource estimation.	Downhole surveying was measured by the drill contractors using a Champ North Seeking solid state gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.
	Specification of the grid system used.	Geocentric Datum of Australia 1994 (GDA94) - Zone 50.
	Quality and adequacy of topographic control.	High resolution aerial photography and digital elevation survey was flown by Geoimage Pty Ltd on 18 February 2018 with expected height accuracy of +/- 0.5 m.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill spacing varies from an 80 metre by 80 metre pattern over Mulgine Hill East, Mulgine Hill West and Mulgine Hill North. Drilling at Mulgine Hill was on 40 metre to 80 metre sections and the northern soil anomaly was tested by 240 metre spaced sections with 80 metre to 160 metre spaced holes.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill spacing at Mulgine Hill East, Mulgine Hill West and Mulgine Hill North is considered sufficient to determine target size.
	Whether sample compositing has been applied.	For non-mineralised intervals 1 metre samples collected from the cyclone were composited into 5 metre composite samples for RC drilling. Where composite samples have anomalous tungsten and/or molybdenum, the 1 m or 2 m cone split samples will be submitted for analysis.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The orientation of drilling was designed to intersect mineralisation as close as possible to perpendicular to the dominant vein geometry and mineralised stratigraphy. Holes drilled at Mulgine Hill East and Mulgine Hill West are perpendicular to mineralisation. Holes at Mulgine Hill North are drilled at 75° to mineralisation for molybdenum zones and 45° - 70° to mineralisation for tungsten zones. Holes at Northern Soil Anomaly are drilled 45° - 75° to stratigraphy. The geometry of mineralisation at Mulgine Hill beneath the Main Zone is currently unknown.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Structural logging of diamond core and structural data collected during geological mapping has confirmed that drill orientation did not introduce any bias regarding the orientation of mineralised veining.
Sample security	The measures taken to ensure sample security.	Samples collected by TGN were securely sealed and stored on site and delivered by courier to the laboratory in Perth. Sample submissions forms used to track samples were emailed directly to the laboratory.
		Internal Company audits for both historical and current Company drilling are carried out to ensure drilling and sampling techniques are consistent with industry standards, consistency of data is validated by Tungsten Mining while loading into the database. Any data which fails the database constraints and cannot be loaded is returned for validation. Global consistency is audited by plotting sections using the database and reconciling assays.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	During drilling the Company inserts standards, duplicates and blanks into the sample stream. These QAQC samples are periodically reviewed and any issues addressed. Tungsten Mining also conducted a thorough review of historical data that included checking of assay results, twinning of holes and checking drilling against historical reports. Any errors identified were corrected in the database.
		For TGN drilling, assay results are visually compared against UV estimates for tungsten and visual estimates for molybdenum.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The prospects are located on Mining Lease M59/425-I and M59/386-I covering an area of approximately 9.4 km ² and 8.4 km ² respectively. TGN has 100% of the mineral rights for tungsten and molybdenum and to all by-products from the mining of tungsten and molybdenum. The current registered holder of the tenement is Minjar Gold Pty Ltd. The normal Western Australian state royalties apply. The Federal Court has determined that Native Title does not exist over the area of M59/425-I in relation to Badamia claim (Federal Court # WAD6123/1998). M59/425-I and M59/386-I are located on former pastoral lease 'Warriedar Station' which has been purchased by the State Government and now forms part of the Karara Rangeland Park. Other operating mines are also located within the Park boundary.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing at the time of reporting. Mid-West Tungsten Pty Ltd, a wholly owned subsidiary of Tungsten Mining NL, holds a consent caveat over tenement M59/425-I and M59/386-I.
Exploration done by other parties	-	Tungsten Drilling Drilling initially focused on tungsten mineralisation with Minefields and ANZECO drilling NQ/BQ diamond drillholes in the 1970s and 1980s.
	Acknowledgment and appraisal of exploration by other parties.	Gold Drilling In 1993, focus then turned onto gold exploration and multiple phases of dominantly RC drilling and minor diamond drilling were completed by numerous companies to present.
		TGN have conducted a thorough review of all drilling and sampling procedures.

Criteria	JORC Code explanation	Commentary			
Geology		Tungsten-molybdenum mineralisation at Mt Mulgine is associated with the Mulgine Granite - a high-level leucogranite forming a 2km stock intruding the Mulgine anticline. The intrusion is associated with intense hydrothermal alteration with late stage fluids containing tungsten, molybdenum, gold, silver, bismuth and fluorite. The Mulgine Hill Deposit occurs along the northern margin of the Mulgine Granite. The main mineralised zone (Main Zone) is			
		associated with the Upper Greisen/Mafic Schist contact. Tungsten mineralization at Mulgine Hill occurs as scheelite hosted by quartz and greisen veins in the Mafic Schist unit (phlogopite-quartz-pyrite schist) and as scheelite in quartz veins			
		or as disseminated scheelite within the greisen (quartz-muscovit rock).			
	Deposit type, geological setting and style of mineralisation.	Overlying the main zone are multiple less continuous mineralize zones hosted by the greisen. In addition, molybdenum – tungsten mineralization is present beneath the Main Zone associated with quartz veined greisenised granite in the Mulgine Granite.			
		Recent drilling by Tungsten Mining has identified significant tungsten-molybdenum mineralisation associated with the Mulgine Granite contact to the east and south of Mulgine Hill. Tungsten Mining drilling at Mulgine Hill East identified broad zones of shallow southerly dipping molybdenum – tungsten mineralisation associated with potassic alteration and quartz veining in mafic units. Alteration and veining is similar to that a Mulgine Hill.			
		At Mulgine Hill North and West, the current drilling program intersected similar zones of tungsten mineralization on strike extensions of the Upper Greisen/Mafic Schist contact.			
		At Mulgine Hill North, in the hangingwall to the Upper Greisen molybdenum mineralization is associated with quartz-veined mafic units.			
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:				
	 easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Collar data for drilling is included in Appendix A.			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade	For prospect that are dominantly tungsten, intersections are reported for all intervals greater than 3m at 0.05% WO ₃ using a lower cut-off grade 0.05% WO ₃ , no top cut grade and up to 2m of internal waste.			
	truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	For prospects where there is significant molybdenum presen (>500 ppm Mo), intersections were also reported using a lower cut-off grade 500 ppm Mo. No top cut and up to 2m of internal waste was used.			
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade	For reporting of tungsten intersections, all assays >1.0% WOs are reported beneath the relevant intersection. Interval zone of waste up to 2m wide are included in intersections provided the adjacent zone and waste are >0.05% WO ₃ .			
	results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	For reporting of molybdenum intersections, all assays 10,000 ppm (>1.0% Mo) are reported beneath the relevant intersection. Interval zones of waste up to 2m wide are included in intersections provided the adjacent zone and waste are >500 ppm Mo.			

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, no metal equivalents were quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 Mulgine Hill East and Mulgine Hill West - holes will intersect mineralisation at between 80° - 90° and true thickness will be between 90 to 100% of the intersection thickness. Mulgine Hill North - holes will intersect molybdenum mineralisation at 75° and true thickness will be approximately 90% of the intersection thickness. Mulgine Hill North - holes will intersect tungsten mineralisation at 45° - 80° and true thickness will be approximately 75% to 100% of the intersection thickness. Mulgine Hill Footwall – geometry of mineralisation is unknown, therefore true thickness is unknown.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Intersections greater than 3m at 0.05 WO ₃ for current drill program are reported and holes with no significant mineralisation are documented in Appendix 1.
		A second list of all Intersections greater than 3m at 500 ppm Mo for current drill program is reported in Appendix 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Mulgine Hill Mineralogical and metallurgical studies on the Hill deposit showed scheelite was well liberated below 0.3mm and gave high recoveries using x-ray ore sorting, gravity separation tables and flotation. X-ray Ore sorting to remove gangue material prior to milling, gravity treatment and flotation has the potential to reduce the processing plant footprint, capital and operating costs.
		Cleaning of the final concentrate to achieve the required grade was achieved using flotation at ambient temperature. Evidence gathered to date shows that no metallurgical problems are expected to affect the overall viability of the project.
		These results reinforce the metallurgical test work completed in the 1970s and 1980s that showed that the ore as represented by the samples tested was readily concentrated to a 65% WO ₃ concentrate at an estimated recovery of 80% .
		Mulgine Hill East The mineralisation intersected in the current drilling program, is representative of the mineralisation tested in prior testwork.
		Testwork demonstrated ore amenability to sulphide flotation to concentrate the molybdenum and copper minerals. No further work has been completed to produce a saleable molybdenum or copper concentrate from this material.

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Following the reporting of the maiden Ore Reserve and positive Pre-Feasibility Study (PFS) for the Project, the Company continues to advance the feasibility studies for the Project. Planned activities include: Mine design and optimisation of the mining schedule, geotechnical studies and definition of ore reserves. Metallurgical test work on the material from Mulgine Trench, Mulgine Hill and Mulgine Hill East Process design and engineering for the tungsten processing plant and associated non-process infrastructure. Assessment of existing and exploration for additional ground water resources and Completion of native flora, fauna, aboriginal heritage surveys and regulatory approval processes.